rhaymison commited on
Commit
6a60fc3
·
verified ·
1 Parent(s): 1f8bbe8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -2
README.md CHANGED
@@ -1,8 +1,105 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
 
 
6
 
 
7
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: google-bert/bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: ner-portuguese
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
 
19
+ # ner-portuguese-br-bert-cased
20
 
21
+ This model aims to meet the needs of models in the Portuguese language. He has various named classes. Follow the list below:
22
 
23
+ This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
24
+ It achieves the following results on the evaluation set:
25
+ - Loss: 0.0618
26
+ - Precision: 0.8965
27
+ - Recall: 0.8815
28
+ - F1: 0.8889
29
+ - Accuracy: 0.9810
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 1e-05
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 8
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 8
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - num_epochs: 1
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
62
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
63
+ | 0.3792 | 0.03 | 500 | 0.2062 | 0.6752 | 0.6537 | 0.6642 | 0.9522 |
64
+ | 0.1822 | 0.06 | 1000 | 0.1587 | 0.7685 | 0.7267 | 0.7470 | 0.9618 |
65
+ | 0.152 | 0.08 | 1500 | 0.1407 | 0.7932 | 0.7675 | 0.7802 | 0.9663 |
66
+ | 0.1385 | 0.11 | 2000 | 0.1240 | 0.8218 | 0.7863 | 0.8037 | 0.9693 |
67
+ | 0.1216 | 0.14 | 2500 | 0.1129 | 0.8529 | 0.7850 | 0.8175 | 0.9710 |
68
+ | 0.1192 | 0.17 | 3000 | 0.1059 | 0.8520 | 0.7917 | 0.8208 | 0.9717 |
69
+ | 0.1165 | 0.2 | 3500 | 0.1053 | 0.8373 | 0.8071 | 0.8220 | 0.9717 |
70
+ | 0.0997 | 0.23 | 4000 | 0.0978 | 0.8434 | 0.8212 | 0.8322 | 0.9729 |
71
+ | 0.0938 | 0.25 | 4500 | 0.0963 | 0.8393 | 0.8313 | 0.8353 | 0.9736 |
72
+ | 0.0921 | 0.28 | 5000 | 0.0867 | 0.8593 | 0.8365 | 0.8478 | 0.9750 |
73
+ | 0.0943 | 0.31 | 5500 | 0.0846 | 0.8704 | 0.8268 | 0.8480 | 0.9754 |
74
+ | 0.0921 | 0.34 | 6000 | 0.0832 | 0.8556 | 0.8384 | 0.8469 | 0.9750 |
75
+ | 0.0936 | 0.37 | 6500 | 0.0802 | 0.8726 | 0.8361 | 0.8540 | 0.9760 |
76
+ | 0.0854 | 0.39 | 7000 | 0.0780 | 0.8749 | 0.8452 | 0.8598 | 0.9767 |
77
+ | 0.082 | 0.42 | 7500 | 0.0751 | 0.8812 | 0.8472 | 0.8639 | 0.9773 |
78
+ | 0.0761 | 0.45 | 8000 | 0.0745 | 0.8752 | 0.8571 | 0.8660 | 0.9772 |
79
+ | 0.0799 | 0.48 | 8500 | 0.0752 | 0.8635 | 0.8530 | 0.8582 | 0.9767 |
80
+ | 0.0728 | 0.51 | 9000 | 0.0746 | 0.8938 | 0.8398 | 0.8660 | 0.9780 |
81
+ | 0.0787 | 0.54 | 9500 | 0.0715 | 0.8791 | 0.8552 | 0.8670 | 0.9780 |
82
+ | 0.0721 | 0.56 | 10000 | 0.0707 | 0.8822 | 0.8598 | 0.8709 | 0.9785 |
83
+ | 0.0729 | 0.59 | 10500 | 0.0682 | 0.8775 | 0.8743 | 0.8759 | 0.9790 |
84
+ | 0.0707 | 0.62 | 11000 | 0.0686 | 0.8797 | 0.8696 | 0.8746 | 0.9789 |
85
+ | 0.0726 | 0.65 | 11500 | 0.0683 | 0.8944 | 0.8497 | 0.8715 | 0.9788 |
86
+ | 0.0689 | 0.68 | 12000 | 0.0667 | 0.8931 | 0.8609 | 0.8767 | 0.9795 |
87
+ | 0.0735 | 0.7 | 12500 | 0.0673 | 0.8742 | 0.8815 | 0.8779 | 0.9791 |
88
+ | 0.0725 | 0.73 | 13000 | 0.0666 | 0.8849 | 0.8713 | 0.8781 | 0.9796 |
89
+ | 0.0684 | 0.76 | 13500 | 0.0656 | 0.8881 | 0.8728 | 0.8804 | 0.9799 |
90
+ | 0.0736 | 0.79 | 14000 | 0.0644 | 0.8948 | 0.8677 | 0.8811 | 0.9800 |
91
+ | 0.0663 | 0.82 | 14500 | 0.0644 | 0.8844 | 0.8764 | 0.8803 | 0.9798 |
92
+ | 0.0652 | 0.85 | 15000 | 0.0645 | 0.8778 | 0.8845 | 0.8812 | 0.9797 |
93
+ | 0.0672 | 0.87 | 15500 | 0.0644 | 0.8788 | 0.8807 | 0.8797 | 0.9796 |
94
+ | 0.0625 | 0.9 | 16000 | 0.0630 | 0.8889 | 0.8819 | 0.8854 | 0.9804 |
95
+ | 0.0712 | 0.93 | 16500 | 0.0621 | 0.8913 | 0.8818 | 0.8866 | 0.9806 |
96
+ | 0.0629 | 0.96 | 17000 | 0.0618 | 0.8965 | 0.8815 | 0.8889 | 0.9810 |
97
+ | 0.0649 | 0.99 | 17500 | 0.0618 | 0.8953 | 0.8806 | 0.8879 | 0.9809 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.38.2
103
+ - Pytorch 2.2.1+cu121
104
+ - Datasets 2.18.0
105
+ - Tokenizers 0.15.2