Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,105 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
|
|
|
|
6 |
|
|
|
7 |
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google-bert/bert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: ner-portuguese
|
13 |
+
results: []
|
14 |
---
|
15 |
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
# ner-portuguese-br-bert-cased
|
20 |
|
21 |
+
This model aims to meet the needs of models in the Portuguese language. He has various named classes. Follow the list below:
|
22 |
|
23 |
+
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset.
|
24 |
+
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 0.0618
|
26 |
+
- Precision: 0.8965
|
27 |
+
- Recall: 0.8815
|
28 |
+
- F1: 0.8889
|
29 |
+
- Accuracy: 0.9810
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 1e-05
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 8
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 1
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
62 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
63 |
+
| 0.3792 | 0.03 | 500 | 0.2062 | 0.6752 | 0.6537 | 0.6642 | 0.9522 |
|
64 |
+
| 0.1822 | 0.06 | 1000 | 0.1587 | 0.7685 | 0.7267 | 0.7470 | 0.9618 |
|
65 |
+
| 0.152 | 0.08 | 1500 | 0.1407 | 0.7932 | 0.7675 | 0.7802 | 0.9663 |
|
66 |
+
| 0.1385 | 0.11 | 2000 | 0.1240 | 0.8218 | 0.7863 | 0.8037 | 0.9693 |
|
67 |
+
| 0.1216 | 0.14 | 2500 | 0.1129 | 0.8529 | 0.7850 | 0.8175 | 0.9710 |
|
68 |
+
| 0.1192 | 0.17 | 3000 | 0.1059 | 0.8520 | 0.7917 | 0.8208 | 0.9717 |
|
69 |
+
| 0.1165 | 0.2 | 3500 | 0.1053 | 0.8373 | 0.8071 | 0.8220 | 0.9717 |
|
70 |
+
| 0.0997 | 0.23 | 4000 | 0.0978 | 0.8434 | 0.8212 | 0.8322 | 0.9729 |
|
71 |
+
| 0.0938 | 0.25 | 4500 | 0.0963 | 0.8393 | 0.8313 | 0.8353 | 0.9736 |
|
72 |
+
| 0.0921 | 0.28 | 5000 | 0.0867 | 0.8593 | 0.8365 | 0.8478 | 0.9750 |
|
73 |
+
| 0.0943 | 0.31 | 5500 | 0.0846 | 0.8704 | 0.8268 | 0.8480 | 0.9754 |
|
74 |
+
| 0.0921 | 0.34 | 6000 | 0.0832 | 0.8556 | 0.8384 | 0.8469 | 0.9750 |
|
75 |
+
| 0.0936 | 0.37 | 6500 | 0.0802 | 0.8726 | 0.8361 | 0.8540 | 0.9760 |
|
76 |
+
| 0.0854 | 0.39 | 7000 | 0.0780 | 0.8749 | 0.8452 | 0.8598 | 0.9767 |
|
77 |
+
| 0.082 | 0.42 | 7500 | 0.0751 | 0.8812 | 0.8472 | 0.8639 | 0.9773 |
|
78 |
+
| 0.0761 | 0.45 | 8000 | 0.0745 | 0.8752 | 0.8571 | 0.8660 | 0.9772 |
|
79 |
+
| 0.0799 | 0.48 | 8500 | 0.0752 | 0.8635 | 0.8530 | 0.8582 | 0.9767 |
|
80 |
+
| 0.0728 | 0.51 | 9000 | 0.0746 | 0.8938 | 0.8398 | 0.8660 | 0.9780 |
|
81 |
+
| 0.0787 | 0.54 | 9500 | 0.0715 | 0.8791 | 0.8552 | 0.8670 | 0.9780 |
|
82 |
+
| 0.0721 | 0.56 | 10000 | 0.0707 | 0.8822 | 0.8598 | 0.8709 | 0.9785 |
|
83 |
+
| 0.0729 | 0.59 | 10500 | 0.0682 | 0.8775 | 0.8743 | 0.8759 | 0.9790 |
|
84 |
+
| 0.0707 | 0.62 | 11000 | 0.0686 | 0.8797 | 0.8696 | 0.8746 | 0.9789 |
|
85 |
+
| 0.0726 | 0.65 | 11500 | 0.0683 | 0.8944 | 0.8497 | 0.8715 | 0.9788 |
|
86 |
+
| 0.0689 | 0.68 | 12000 | 0.0667 | 0.8931 | 0.8609 | 0.8767 | 0.9795 |
|
87 |
+
| 0.0735 | 0.7 | 12500 | 0.0673 | 0.8742 | 0.8815 | 0.8779 | 0.9791 |
|
88 |
+
| 0.0725 | 0.73 | 13000 | 0.0666 | 0.8849 | 0.8713 | 0.8781 | 0.9796 |
|
89 |
+
| 0.0684 | 0.76 | 13500 | 0.0656 | 0.8881 | 0.8728 | 0.8804 | 0.9799 |
|
90 |
+
| 0.0736 | 0.79 | 14000 | 0.0644 | 0.8948 | 0.8677 | 0.8811 | 0.9800 |
|
91 |
+
| 0.0663 | 0.82 | 14500 | 0.0644 | 0.8844 | 0.8764 | 0.8803 | 0.9798 |
|
92 |
+
| 0.0652 | 0.85 | 15000 | 0.0645 | 0.8778 | 0.8845 | 0.8812 | 0.9797 |
|
93 |
+
| 0.0672 | 0.87 | 15500 | 0.0644 | 0.8788 | 0.8807 | 0.8797 | 0.9796 |
|
94 |
+
| 0.0625 | 0.9 | 16000 | 0.0630 | 0.8889 | 0.8819 | 0.8854 | 0.9804 |
|
95 |
+
| 0.0712 | 0.93 | 16500 | 0.0621 | 0.8913 | 0.8818 | 0.8866 | 0.9806 |
|
96 |
+
| 0.0629 | 0.96 | 17000 | 0.0618 | 0.8965 | 0.8815 | 0.8889 | 0.9810 |
|
97 |
+
| 0.0649 | 0.99 | 17500 | 0.0618 | 0.8953 | 0.8806 | 0.8879 | 0.9809 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.38.2
|
103 |
+
- Pytorch 2.2.1+cu121
|
104 |
+
- Datasets 2.18.0
|
105 |
+
- Tokenizers 0.15.2
|