--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 datasets: - rgres/AerialDreams tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - rgres/Seg2Map-finetuned This pipeline was finetuned from **stabilityai/stable-diffusion-2** on the **rgres/AerialDreams** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ["Chemin de Saint-Antoine, Saint-Cyr-sur-Mer, Toulon, Var, Provence-Alpes-Cote d'Azur, Frane", 'Aerial view of Rond-Point de la 1e Armee Francaise - Lieutenant Paul Meyer, Mulhouse, Haut-Rhin, Grand Est, France metropolitaine, 68100, France', '31, Rue Molière, SS ace Coeur, Pyramides, La Roche-sur-Yon, Vendee, Pays de la Loire, France metropolitaine, 85000, France', 'Aerial view of Mourenx, Pau, Pyrenees-Atlantiques, Nouvelle-Aquitaine, France metropolitaine, 64150, France', '17 rue du moutier, Angousrine-Vileneuve-Les-Escaldes, Pyrenees Orientales, Occitanie, France metropolitaine, 66760, France']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("rgres/Seg2Map-finetuned", torch_dtype=torch.float16) prompt = "Chemin de Saint-Antoine, Saint-Cyr-sur-Mer, Toulon, Var, Provence-Alpes-Cote d'Azur, Frane" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 1 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/rubengres/text2image-fine-tune/runs/u9u76o1e).