File size: 5,563 Bytes
8b360a5
 
 
 
 
 
c9d06c3
 
8b360a5
 
 
 
 
 
 
 
c9d06c3
 
 
 
 
 
8b360a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d06c3
 
 
8b360a5
c9d06c3
 
8b360a5
 
c9d06c3
 
 
 
 
 
 
 
8b360a5
c9d06c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b360a5
 
c9d06c3
 
 
 
8b360a5
c9d06c3
8b360a5
c9d06c3
 
 
8b360a5
c9d06c3
 
 
8b360a5
c9d06c3
8b360a5
c9d06c3
8b360a5
 
 
c9d06c3
 
8b360a5
 
 
 
 
 
 
 
 
 
 
 
c9d06c3
8b360a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d06c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import torch.nn as nn
from transformers import PreTrainedModel

from typing import List


from .config import LidirlCNNConfig

def torch_max_no_pads(model_out, lengths):
    indices = torch.arange(model_out.size(1)).to(model_out.device)
    mask = (indices < lengths.view(-1, 1)).unsqueeze(-1).expand(model_out.size())
    model_out = torch.where(mask, model_out, torch.tensor(-1e9))
    max_pool = torch.max(model_out, 1)[0]
    return max_pool

class TransposeModule(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x.transpose(1, 2)

class ProjectionLayer(nn.Module):
    """
        Noise-aware labels layer or traditional linear projection
    """

    def __init__(self, hidden_dim, label_size, montecarlo_layer=False):
        super().__init__()
        self.montecarlo_layer = montecarlo_layer
        if montecarlo_layer:
            self.proj = MCSoftmaxDenseFA(hidden_dim, label_size, 1, logits_only=True)
        else:
            self.proj = nn.Linear(hidden_dim, label_size)

    def forward(self, x):
        return self.proj(x)


class ConvolutionalBlock(
    nn.Module,
):
    """
        Convolutional block
        https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html
    """
    def __init__(self, 
                embed_dim : int,
                channels : List[int],
                kernels : List[int],
                strides : List[int]):

        super(ConvolutionalBlock, self).__init__()
        layers = []

        self.embed_dim = embed_dim
        input_dimension = embed_dim
        for channel, kernel, stride in zip(channels, kernels, strides):
            next_layer = nn.Conv1d(
                in_channels = input_dimension,
                out_channels = channel, 
                kernel_size = kernel, 
                stride = stride, 
                padding = 'valid', # we handle the padding ourselves in the forward function
                )
            input_dimension = channel
            layers.append(TransposeModule())
            layers.append(next_layer)
            layers.append(TransposeModule())
            layers.append(nn.LayerNorm(channel, elementwise_affine=True))
            layers.append(nn.GELU())
            layers.append(nn.Dropout(0.1))
        self.model = nn.Sequential(*layers)
        self.output_dim = channels[-1]

        self.min_length = 1
        for kernel, stride in zip(kernels[::-1], strides[::-1]):
            self.min_length = ((self.min_length - 1) * stride) + kernel

    def forward(self, inputs, lengths):
        # this is our padding trick instead of consistent padding
        if inputs.size(1) < self.min_length:
            pads = torch.zeros((inputs.size(0), self.min_length - inputs.size(1), self.embed_dim), device=inputs.device)
            inputs = torch.cat((inputs, pads), dim=1)

        outputs  = self.model(inputs)

        for layer_i in range(1, len(self.model), 6):
            lengths = torch.floor(((lengths - self.model[layer_i].kernel_size[0]) / self.model[layer_i].stride[0]) + 1).to(lengths.device, dtype=torch.long)
        lengths[lengths < 1] = 1

        return outputs, lengths
    
class LidirlCNN(PreTrainedModel):
    """
        Defines the Lidirl CNN MODEL
    """
    config_class = LidirlCNNConfig

    def __init__(self, config):
        super().__init__(config)
    
        self.encoder = ConvolutionalBlock(config.embed_dim, config.channels, config.kernels, config.strides)
        self.embed_layer = nn.Embedding(config.vocab_size, config.embed_dim)
        self.proj = ProjectionLayer(self.encoder.output_dim, config.label_size, config.montecarlo_layer)

        self.label_size = config.label_size
        self.max_length = config.max_length
        self.multilabel = config.multilabel
        self.monte_carlo = config.montecarlo_layer

        self.labels = ["" for _ in config.labels]
        for key, value in config.labels.items():
            self.labels[value] = key


    def forward(self, inputs, lengths):
        inputs = inputs[:, :self.max_length]
        lengths = lengths.clamp(max=self.max_length)

        embeddings = self.embed_layer(inputs)
        encoding, lengths = self.encoder(embeddings, lengths=lengths)
        max_pool = torch_max_no_pads(encoding, lengths)
        projection = self.proj(max_pool)

        return projection

    def __call__(self, inputs, lengths):
        # this is inference only model
        with torch.no_grad():
            logits = self.forward(inputs, lengths)
            if self.multilabel:
                probs = torch.sigmoid(logits)
            else:
                probs = torch.softmax(logits, dim=-1)
        return probs

    def predict(self, inputs, lengths, threshold=0.5, top_k=None):
        probs = self.__call__(inputs, lengths)
        if top_k is not None and top_k > 0:
            top_k_preds = torch.topk(probs, top_k, dim=1)
            pred_labels = []
            for pred, prob in zip(top_k_preds.indices, top_k_preds.values):
                pred_labels.append([(self.labels[p.item()], pr.item()) for (p, pr) in zip(pred, prob)])
            return pred_labels
        if self.multilabel:
            batch_idx, label_idx = torch.where(probs > threshold)
            output = [[] for _ in range(len(inputs))]
            for batch, label in zip(batch_idx, label_idx):
                label_string = self.labels
                output[batch.item()].append(
                    (self.labels[label.item()], probs[batch, label])
                )
        return output