update model card README.md
Browse files
README.md
CHANGED
@@ -17,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# roberta-news-classifier
|
19 |
|
20 |
-
This model is a fine-tuned version of [
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- F1: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,35 +43,28 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 1e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 500
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.1611 | 6.0 | 372 | 0.2254 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
|
64 |
-
| 0.1302 | 7.0 | 434 | 0.2204 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
65 |
-
| 0.1058 | 8.0 | 496 | 0.2238 | 0.9337 | 0.9337 | 0.9337 | 0.9337 |
|
66 |
-
| 0.0976 | 9.0 | 558 | 0.2295 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
67 |
-
| 0.0795 | 10.0 | 620 | 0.2299 | 0.9378 | 0.9378 | 0.9378 | 0.9378 |
|
68 |
-
| 0.0641 | 11.0 | 682 | 0.2394 | 0.9388 | 0.9388 | 0.9388 | 0.9388 |
|
69 |
-
| 0.0544 | 12.0 | 744 | 0.2392 | 0.9367 | 0.9367 | 0.9367 | 0.9367 |
|
70 |
|
71 |
|
72 |
### Framework versions
|
73 |
|
74 |
-
- Transformers 4.
|
75 |
- Pytorch 1.12.1+cu113
|
76 |
- Datasets 2.7.1
|
77 |
- Tokenizers 0.13.2
|
|
|
17 |
|
18 |
# roberta-news-classifier
|
19 |
|
20 |
+
This model is a fine-tuned version of [russellc/roberta-news-classifier](https://huggingface.co/russellc/roberta-news-classifier) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1043
|
23 |
+
- Accuracy: 0.9786
|
24 |
+
- F1: 0.9786
|
25 |
+
- Precision: 0.9786
|
26 |
+
- Recall: 0.9786
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 64
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 5
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.1327 | 1.0 | 123 | 0.1043 | 0.9786 | 0.9786 | 0.9786 | 0.9786 |
|
59 |
+
| 0.1103 | 2.0 | 246 | 0.1157 | 0.9735 | 0.9735 | 0.9735 | 0.9735 |
|
60 |
+
| 0.102 | 3.0 | 369 | 0.1104 | 0.9735 | 0.9735 | 0.9735 | 0.9735 |
|
61 |
+
| 0.0825 | 4.0 | 492 | 0.1271 | 0.9714 | 0.9714 | 0.9714 | 0.9714 |
|
62 |
+
| 0.055 | 5.0 | 615 | 0.1296 | 0.9724 | 0.9724 | 0.9724 | 0.9724 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
+
- Transformers 4.25.1
|
68 |
- Pytorch 1.12.1+cu113
|
69 |
- Datasets 2.7.1
|
70 |
- Tokenizers 0.13.2
|