import re import random import argparse from dataclasses import dataclass, field from typing import List import torch import wandb from tqdm import tqdm from PIL import Image from datasets import load_dataset from transformers import ( Qwen2_5_VLForConditionalGeneration, AutoProcessor, BitsAndBytesConfig, ) from qwen_vl_utils import process_vision_info from peft import LoraConfig, get_peft_model from trl import SFTConfig, SFTTrainer def extract_question(raw_text: str) -> str: pattern = r"<\|start_header_id\|>user<\|end_header_id\|>\s*(.*?)\s*<\|eot_id\|>" m = re.search(pattern, raw_text, re.DOTALL) return m.group(1).strip() if m else raw_text.strip() def format_data_spacethinker(sample): system_message = { "role": "system", "content": [ { "type": "text", "text": ( "You are VL-Thinking U+1F914, a helpful assistant with excellent reasoning ability.\n" "A user asks you a question, and you should try to solve it." "You should first think about the reasoning process in the mind and then provides the user with the answer.\n" "The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here ." ) } ] } formatted = [system_message] user_msg = {"role": "user", "content": []} question = extract_question(sample.get("input", "")) if question: user_msg["content"].append({"type": "text", "text": question}) images = sample.get("images") or [] if images: user_msg["content"].append({"type": "image", "image": images[0]}) formatted.append(user_msg) if sample.get("output"): formatted.append({ "role": "assistant", "content": [{"type": "text", "text": sample["output"]}] }) return formatted def collate_fn(examples, processor): # examples: list of formatted samples (list of message dicts) texts = [processor.apply_chat_template(sample, tokenize=False) for sample in examples] image_batches = [process_vision_info(sample)[0] for sample in examples] batch = processor(text=texts, images=image_batches, return_tensors="pt", padding=True) batch = {k: v.cpu() for k, v in batch.items()} labels = batch["input_ids"].clone() labels[labels == processor.tokenizer.pad_token_id] = -100 image_token_ids = ( [151652, 151653, 151655] if hasattr(processor, "image_processor") else [processor.tokenizer.convert_tokens_to_ids(processor.image_token)] ) for tid in image_token_ids: labels[labels == tid] = -100 batch["labels"] = labels return batch @dataclass class TrainingConfig: model_id: str = "UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B" lora_r: int = 128 lora_alpha: int = 256 lora_dropout: float = 0.05 target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "o_proj"]) num_train_epochs: int = 3 train_batch_size: int = 1 eval_batch_size: int = 1 gradient_accumulation_steps: int = 8 learning_rate: float = 2e-5 warmup_ratio: float = 0.03 output_dir: str = "spaceom" wandb_project: str = "spaceom" wandb_run_name: str = "spaceom" def parse_args() -> TrainingConfig: default_cfg = TrainingConfig() parser = argparse.ArgumentParser(description="Train a VL Spacethinker model with LoRA") parser.add_argument("--model_id", default=default_cfg.model_id) parser.add_argument("--lora_r", type=int, default=default_cfg.lora_r) parser.add_argument("--lora_alpha", type=int, default=default_cfg.lora_alpha) parser.add_argument("--lora_dropout", type=float, default=default_cfg.lora_dropout) parser.add_argument( "--target_modules", default=','.join(default_cfg.target_modules), help="Comma-separated list of target modules for LoRA" ) parser.add_argument("--num_train_epochs", type=int, default=default_cfg.num_train_epochs) parser.add_argument("--train_batch_size", type=int, default=default_cfg.train_batch_size) parser.add_argument("--eval_batch_size", type=int, default=default_cfg.eval_batch_size) parser.add_argument( "--gradient_accumulation_steps", type=int, default=default_cfg.gradient_accumulation_steps ) parser.add_argument("--learning_rate", type=float, default=default_cfg.learning_rate) parser.add_argument("--warmup_ratio", type=float, default=default_cfg.warmup_ratio) parser.add_argument("--output_dir", default=default_cfg.output_dir) parser.add_argument("--wandb_project", default=default_cfg.wandb_project) parser.add_argument("--wandb_run_name", default=default_cfg.wandb_run_name) args = parser.parse_args() return TrainingConfig( model_id=args.model_id, lora_r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, target_modules=args.target_modules.split(","), num_train_epochs=args.num_train_epochs, train_batch_size=args.train_batch_size, eval_batch_size=args.eval_batch_size, gradient_accumulation_steps=args.gradient_accumulation_steps, learning_rate=args.learning_rate, warmup_ratio=args.warmup_ratio, output_dir=args.output_dir, wandb_project=args.wandb_project, wandb_run_name=args.wandb_run_name, ) def prepare_datasets(cfg: TrainingConfig): print(f"Loading dataset: SpaceThinker") raw_train_spacethinker = load_dataset("remyxai/SpaceThinker", split="train") raw_eval_spacethinker = load_dataset("remyxai/SpaceThinker", split="test") print(f"Loading dataset: SpaceOm") raw_train_spaceom = load_dataset("remyxai/SpaceOm", split="train") raw_eval_spaceom = load_dataset("remyxai/SpaceOm", split="test") print(f"Loading dataset: Robo2VLM") raw_train_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="train") raw_eval_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="test") print("Formatting train samples…") train_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_train_spacethinker, desc="Train")] train_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_train_spaceom, desc="Train")] train_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_train_robo2vlm, desc="Train")] print("Formatting eval samples…") eval_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_eval_spacethinker, desc="Eval")] eval_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_eval_spaceom, desc="Eval")] eval_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_eval_robo2vlm, desc="Eval")] train_ds = train_ds_spacethinker + train_ds_spaceom + train_ds_robo2vlm eval_ds = eval_ds_spacethinker + eval_ds_spaceom + eval_ds_robo2vlm random.shuffle(train_ds) random.shuffle(eval_ds) return train_ds, eval_ds def prepare_model_and_optimizer(cfg: TrainingConfig): bnb = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( cfg.model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=bnb ) processor = AutoProcessor.from_pretrained(cfg.model_id) peft_cfg = LoraConfig( r=cfg.lora_r, lora_alpha=cfg.lora_alpha, lora_dropout=cfg.lora_dropout, bias="none", target_modules=cfg.target_modules, task_type="CAUSAL_LM", ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") peft_model = get_peft_model(model, peft_cfg).to(device) peft_model.print_trainable_parameters() return peft_model, processor, peft_cfg def main(): cfg = parse_args() train_ds, eval_ds = prepare_datasets(cfg) model, processor, peft_cfg = prepare_model_and_optimizer(cfg) sft_args = SFTConfig( output_dir=cfg.output_dir, num_train_epochs=cfg.num_train_epochs, per_device_train_batch_size=cfg.train_batch_size, per_device_eval_batch_size=cfg.eval_batch_size, gradient_accumulation_steps=cfg.gradient_accumulation_steps, gradient_checkpointing=True, optim="adamw_torch_fused", learning_rate=cfg.learning_rate, lr_scheduler_type="constant", logging_steps=10, eval_steps=10, eval_strategy="steps", save_strategy="steps", save_steps=20, metric_for_best_model="eval_loss", greater_is_better=False, load_best_model_at_end=True, bf16=True, tf32=True, max_grad_norm=0.3, warmup_ratio=cfg.warmup_ratio, gradient_checkpointing_kwargs={"use_reentrant": False}, push_to_hub=True, report_to="wandb", dataset_kwargs={"skip_prepare_dataset": True}, ) sft_args.remove_unused_columns = False wandb.init( project=cfg.wandb_project, name=cfg.wandb_run_name, config=sft_args, ) trainer = SFTTrainer( model=model, args=sft_args, train_dataset=train_ds, eval_dataset=eval_ds, data_collator=lambda ex: collate_fn(ex, processor), peft_config=peft_cfg, tokenizer=processor.tokenizer, ) trainer.train() trainer.save_model(cfg.output_dir) if __name__ == "__main__": main()