import re
import random
import argparse
from dataclasses import dataclass, field
from typing import List
import torch
import wandb
from tqdm import tqdm
from PIL import Image
from datasets import load_dataset
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
BitsAndBytesConfig,
)
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, get_peft_model
from trl import SFTConfig, SFTTrainer
def extract_question(raw_text: str) -> str:
pattern = r"<\|start_header_id\|>user<\|end_header_id\|>\s*(.*?)\s*<\|eot_id\|>"
m = re.search(pattern, raw_text, re.DOTALL)
return m.group(1).strip() if m else raw_text.strip()
def format_data_spacethinker(sample):
system_message = {
"role": "system",
"content": [
{
"type": "text",
"text": (
"You are VL-Thinking U+1F914, a helpful assistant with excellent reasoning ability.\n"
"A user asks you a question, and you should try to solve it."
"You should first think about the reasoning process in the mind and then provides the user with the answer.\n"
"The reasoning process and answer are enclosed within and tags, respectively, i.e., reasoning process here answer here ."
)
}
]
}
formatted = [system_message]
user_msg = {"role": "user", "content": []}
question = extract_question(sample.get("input", ""))
if question:
user_msg["content"].append({"type": "text", "text": question})
images = sample.get("images") or []
if images:
user_msg["content"].append({"type": "image", "image": images[0]})
formatted.append(user_msg)
if sample.get("output"):
formatted.append({
"role": "assistant",
"content": [{"type": "text", "text": sample["output"]}]
})
return formatted
def collate_fn(examples, processor):
# examples: list of formatted samples (list of message dicts)
texts = [processor.apply_chat_template(sample, tokenize=False) for sample in examples]
image_batches = [process_vision_info(sample)[0] for sample in examples]
batch = processor(text=texts, images=image_batches, return_tensors="pt", padding=True)
batch = {k: v.cpu() for k, v in batch.items()}
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
image_token_ids = (
[151652, 151653, 151655]
if hasattr(processor, "image_processor")
else [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
)
for tid in image_token_ids:
labels[labels == tid] = -100
batch["labels"] = labels
return batch
@dataclass
class TrainingConfig:
model_id: str = "UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B"
lora_r: int = 128
lora_alpha: int = 256
lora_dropout: float = 0.05
target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "o_proj"])
num_train_epochs: int = 3
train_batch_size: int = 1
eval_batch_size: int = 1
gradient_accumulation_steps: int = 8
learning_rate: float = 2e-5
warmup_ratio: float = 0.03
output_dir: str = "spaceom"
wandb_project: str = "spaceom"
wandb_run_name: str = "spaceom"
def parse_args() -> TrainingConfig:
default_cfg = TrainingConfig()
parser = argparse.ArgumentParser(description="Train a VL Spacethinker model with LoRA")
parser.add_argument("--model_id", default=default_cfg.model_id)
parser.add_argument("--lora_r", type=int, default=default_cfg.lora_r)
parser.add_argument("--lora_alpha", type=int, default=default_cfg.lora_alpha)
parser.add_argument("--lora_dropout", type=float, default=default_cfg.lora_dropout)
parser.add_argument(
"--target_modules",
default=','.join(default_cfg.target_modules),
help="Comma-separated list of target modules for LoRA"
)
parser.add_argument("--num_train_epochs", type=int, default=default_cfg.num_train_epochs)
parser.add_argument("--train_batch_size", type=int, default=default_cfg.train_batch_size)
parser.add_argument("--eval_batch_size", type=int, default=default_cfg.eval_batch_size)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=default_cfg.gradient_accumulation_steps
)
parser.add_argument("--learning_rate", type=float, default=default_cfg.learning_rate)
parser.add_argument("--warmup_ratio", type=float, default=default_cfg.warmup_ratio)
parser.add_argument("--output_dir", default=default_cfg.output_dir)
parser.add_argument("--wandb_project", default=default_cfg.wandb_project)
parser.add_argument("--wandb_run_name", default=default_cfg.wandb_run_name)
args = parser.parse_args()
return TrainingConfig(
model_id=args.model_id,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=args.target_modules.split(","),
num_train_epochs=args.num_train_epochs,
train_batch_size=args.train_batch_size,
eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
warmup_ratio=args.warmup_ratio,
output_dir=args.output_dir,
wandb_project=args.wandb_project,
wandb_run_name=args.wandb_run_name,
)
def prepare_datasets(cfg: TrainingConfig):
print(f"Loading dataset: SpaceThinker")
raw_train_spacethinker = load_dataset("remyxai/SpaceThinker", split="train")
raw_eval_spacethinker = load_dataset("remyxai/SpaceThinker", split="test")
print(f"Loading dataset: SpaceOm")
raw_train_spaceom = load_dataset("remyxai/SpaceOm", split="train")
raw_eval_spaceom = load_dataset("remyxai/SpaceOm", split="test")
print(f"Loading dataset: Robo2VLM")
raw_train_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="train")
raw_eval_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="test")
print("Formatting train samples…")
train_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_train_spacethinker, desc="Train")]
train_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_train_spaceom, desc="Train")]
train_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_train_robo2vlm, desc="Train")]
print("Formatting eval samples…")
eval_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_eval_spacethinker, desc="Eval")]
eval_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_eval_spaceom, desc="Eval")]
eval_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_eval_robo2vlm, desc="Eval")]
train_ds = train_ds_spacethinker + train_ds_spaceom + train_ds_robo2vlm
eval_ds = eval_ds_spacethinker + eval_ds_spaceom + eval_ds_robo2vlm
random.shuffle(train_ds)
random.shuffle(eval_ds)
return train_ds, eval_ds
def prepare_model_and_optimizer(cfg: TrainingConfig):
bnb = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
cfg.model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb
)
processor = AutoProcessor.from_pretrained(cfg.model_id)
peft_cfg = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
lora_dropout=cfg.lora_dropout,
bias="none",
target_modules=cfg.target_modules,
task_type="CAUSAL_LM",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
peft_model = get_peft_model(model, peft_cfg).to(device)
peft_model.print_trainable_parameters()
return peft_model, processor, peft_cfg
def main():
cfg = parse_args()
train_ds, eval_ds = prepare_datasets(cfg)
model, processor, peft_cfg = prepare_model_and_optimizer(cfg)
sft_args = SFTConfig(
output_dir=cfg.output_dir,
num_train_epochs=cfg.num_train_epochs,
per_device_train_batch_size=cfg.train_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
gradient_checkpointing=True,
optim="adamw_torch_fused",
learning_rate=cfg.learning_rate,
lr_scheduler_type="constant",
logging_steps=10,
eval_steps=10,
eval_strategy="steps",
save_strategy="steps",
save_steps=20,
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
bf16=True,
tf32=True,
max_grad_norm=0.3,
warmup_ratio=cfg.warmup_ratio,
gradient_checkpointing_kwargs={"use_reentrant": False},
push_to_hub=True,
report_to="wandb",
dataset_kwargs={"skip_prepare_dataset": True},
)
sft_args.remove_unused_columns = False
wandb.init(
project=cfg.wandb_project,
name=cfg.wandb_run_name,
config=sft_args,
)
trainer = SFTTrainer(
model=model,
args=sft_args,
train_dataset=train_ds,
eval_dataset=eval_ds,
data_collator=lambda ex: collate_fn(ex, processor),
peft_config=peft_cfg,
tokenizer=processor.tokenizer,
)
trainer.train()
trainer.save_model(cfg.output_dir)
if __name__ == "__main__":
main()