File size: 9,700 Bytes
76d0523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import re
import random
import argparse
from dataclasses import dataclass, field
from typing import List
import torch
import wandb
from tqdm import tqdm
from PIL import Image
from datasets import load_dataset
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
BitsAndBytesConfig,
)
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, get_peft_model
from trl import SFTConfig, SFTTrainer
def extract_question(raw_text: str) -> str:
pattern = r"<\|start_header_id\|>user<\|end_header_id\|>\s*(.*?)\s*<\|eot_id\|>"
m = re.search(pattern, raw_text, re.DOTALL)
return m.group(1).strip() if m else raw_text.strip()
def format_data_spacethinker(sample):
system_message = {
"role": "system",
"content": [
{
"type": "text",
"text": (
"You are VL-Thinking U+1F914, a helpful assistant with excellent reasoning ability.\n"
"A user asks you a question, and you should try to solve it."
"You should first think about the reasoning process in the mind and then provides the user with the answer.\n"
"The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>."
)
}
]
}
formatted = [system_message]
user_msg = {"role": "user", "content": []}
question = extract_question(sample.get("input", ""))
if question:
user_msg["content"].append({"type": "text", "text": question})
images = sample.get("images") or []
if images:
user_msg["content"].append({"type": "image", "image": images[0]})
formatted.append(user_msg)
if sample.get("output"):
formatted.append({
"role": "assistant",
"content": [{"type": "text", "text": sample["output"]}]
})
return formatted
def collate_fn(examples, processor):
# examples: list of formatted samples (list of message dicts)
texts = [processor.apply_chat_template(sample, tokenize=False) for sample in examples]
image_batches = [process_vision_info(sample)[0] for sample in examples]
batch = processor(text=texts, images=image_batches, return_tensors="pt", padding=True)
batch = {k: v.cpu() for k, v in batch.items()}
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
image_token_ids = (
[151652, 151653, 151655]
if hasattr(processor, "image_processor")
else [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
)
for tid in image_token_ids:
labels[labels == tid] = -100
batch["labels"] = labels
return batch
@dataclass
class TrainingConfig:
model_id: str = "UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B"
lora_r: int = 128
lora_alpha: int = 256
lora_dropout: float = 0.05
target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "o_proj"])
num_train_epochs: int = 3
train_batch_size: int = 1
eval_batch_size: int = 1
gradient_accumulation_steps: int = 8
learning_rate: float = 2e-5
warmup_ratio: float = 0.03
output_dir: str = "spaceom"
wandb_project: str = "spaceom"
wandb_run_name: str = "spaceom"
def parse_args() -> TrainingConfig:
default_cfg = TrainingConfig()
parser = argparse.ArgumentParser(description="Train a VL Spacethinker model with LoRA")
parser.add_argument("--model_id", default=default_cfg.model_id)
parser.add_argument("--lora_r", type=int, default=default_cfg.lora_r)
parser.add_argument("--lora_alpha", type=int, default=default_cfg.lora_alpha)
parser.add_argument("--lora_dropout", type=float, default=default_cfg.lora_dropout)
parser.add_argument(
"--target_modules",
default=','.join(default_cfg.target_modules),
help="Comma-separated list of target modules for LoRA"
)
parser.add_argument("--num_train_epochs", type=int, default=default_cfg.num_train_epochs)
parser.add_argument("--train_batch_size", type=int, default=default_cfg.train_batch_size)
parser.add_argument("--eval_batch_size", type=int, default=default_cfg.eval_batch_size)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=default_cfg.gradient_accumulation_steps
)
parser.add_argument("--learning_rate", type=float, default=default_cfg.learning_rate)
parser.add_argument("--warmup_ratio", type=float, default=default_cfg.warmup_ratio)
parser.add_argument("--output_dir", default=default_cfg.output_dir)
parser.add_argument("--wandb_project", default=default_cfg.wandb_project)
parser.add_argument("--wandb_run_name", default=default_cfg.wandb_run_name)
args = parser.parse_args()
return TrainingConfig(
model_id=args.model_id,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=args.target_modules.split(","),
num_train_epochs=args.num_train_epochs,
train_batch_size=args.train_batch_size,
eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.learning_rate,
warmup_ratio=args.warmup_ratio,
output_dir=args.output_dir,
wandb_project=args.wandb_project,
wandb_run_name=args.wandb_run_name,
)
def prepare_datasets(cfg: TrainingConfig):
print(f"Loading dataset: SpaceThinker")
raw_train_spacethinker = load_dataset("remyxai/SpaceThinker", split="train")
raw_eval_spacethinker = load_dataset("remyxai/SpaceThinker", split="test")
print(f"Loading dataset: SpaceOm")
raw_train_spaceom = load_dataset("remyxai/SpaceOm", split="train")
raw_eval_spaceom = load_dataset("remyxai/SpaceOm", split="test")
print(f"Loading dataset: Robo2VLM")
raw_train_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="train")
raw_eval_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="test")
print("Formatting train samples…")
train_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_train_spacethinker, desc="Train")]
train_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_train_spaceom, desc="Train")]
train_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_train_robo2vlm, desc="Train")]
print("Formatting eval samples…")
eval_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_eval_spacethinker, desc="Eval")]
eval_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_eval_spaceom, desc="Eval")]
eval_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_eval_robo2vlm, desc="Eval")]
train_ds = train_ds_spacethinker + train_ds_spaceom + train_ds_robo2vlm
eval_ds = eval_ds_spacethinker + eval_ds_spaceom + eval_ds_robo2vlm
random.shuffle(train_ds)
random.shuffle(eval_ds)
return train_ds, eval_ds
def prepare_model_and_optimizer(cfg: TrainingConfig):
bnb = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
cfg.model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb
)
processor = AutoProcessor.from_pretrained(cfg.model_id)
peft_cfg = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
lora_dropout=cfg.lora_dropout,
bias="none",
target_modules=cfg.target_modules,
task_type="CAUSAL_LM",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
peft_model = get_peft_model(model, peft_cfg).to(device)
peft_model.print_trainable_parameters()
return peft_model, processor, peft_cfg
def main():
cfg = parse_args()
train_ds, eval_ds = prepare_datasets(cfg)
model, processor, peft_cfg = prepare_model_and_optimizer(cfg)
sft_args = SFTConfig(
output_dir=cfg.output_dir,
num_train_epochs=cfg.num_train_epochs,
per_device_train_batch_size=cfg.train_batch_size,
per_device_eval_batch_size=cfg.eval_batch_size,
gradient_accumulation_steps=cfg.gradient_accumulation_steps,
gradient_checkpointing=True,
optim="adamw_torch_fused",
learning_rate=cfg.learning_rate,
lr_scheduler_type="constant",
logging_steps=10,
eval_steps=10,
eval_strategy="steps",
save_strategy="steps",
save_steps=20,
metric_for_best_model="eval_loss",
greater_is_better=False,
load_best_model_at_end=True,
bf16=True,
tf32=True,
max_grad_norm=0.3,
warmup_ratio=cfg.warmup_ratio,
gradient_checkpointing_kwargs={"use_reentrant": False},
push_to_hub=True,
report_to="wandb",
dataset_kwargs={"skip_prepare_dataset": True},
)
sft_args.remove_unused_columns = False
wandb.init(
project=cfg.wandb_project,
name=cfg.wandb_run_name,
config=sft_args,
)
trainer = SFTTrainer(
model=model,
args=sft_args,
train_dataset=train_ds,
eval_dataset=eval_ds,
data_collator=lambda ex: collate_fn(ex, processor),
peft_config=peft_cfg,
tokenizer=processor.tokenizer,
)
trainer.train()
trainer.save_model(cfg.output_dir)
if __name__ == "__main__":
main() |