File size: 9,700 Bytes
76d0523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import re
import random
import argparse
from dataclasses import dataclass, field
from typing import List

import torch
import wandb
from tqdm import tqdm
from PIL import Image
from datasets import load_dataset
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    BitsAndBytesConfig,
)
from qwen_vl_utils import process_vision_info
from peft import LoraConfig, get_peft_model
from trl import SFTConfig, SFTTrainer


def extract_question(raw_text: str) -> str:
    pattern = r"<\|start_header_id\|>user<\|end_header_id\|>\s*(.*?)\s*<\|eot_id\|>"
    m = re.search(pattern, raw_text, re.DOTALL)
    return m.group(1).strip() if m else raw_text.strip()

def format_data_spacethinker(sample):
    system_message = {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": (
                    "You are VL-Thinking U+1F914, a helpful assistant with excellent reasoning ability.\n"
                    "A user asks you a question, and you should try to solve it."
                    "You should first think about the reasoning process in the mind and then provides the user with the answer.\n"
                    "The reasoning process and answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>."
                )
            }
        ]
    }
    formatted = [system_message]

    user_msg = {"role": "user", "content": []}
    question = extract_question(sample.get("input", ""))
    if question:
        user_msg["content"].append({"type": "text", "text": question})
    images = sample.get("images") or []
    if images:
        user_msg["content"].append({"type": "image", "image": images[0]})
    formatted.append(user_msg)

    if sample.get("output"):
        formatted.append({
            "role": "assistant",
            "content": [{"type": "text", "text": sample["output"]}]
        })
    return formatted


def collate_fn(examples, processor):
    # examples: list of formatted samples (list of message dicts)
    texts = [processor.apply_chat_template(sample, tokenize=False) for sample in examples]
    image_batches = [process_vision_info(sample)[0] for sample in examples]
    batch = processor(text=texts, images=image_batches, return_tensors="pt", padding=True)
    batch = {k: v.cpu() for k, v in batch.items()}

    labels = batch["input_ids"].clone()
    labels[labels == processor.tokenizer.pad_token_id] = -100

    image_token_ids = (
        [151652, 151653, 151655]
        if hasattr(processor, "image_processor")
        else [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
    )
    for tid in image_token_ids:
        labels[labels == tid] = -100

    batch["labels"] = labels
    return batch


@dataclass
class TrainingConfig:
    model_id: str = "UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B"
    lora_r: int = 128
    lora_alpha: int = 256
    lora_dropout: float = 0.05
    target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "o_proj"])
    num_train_epochs: int = 3
    train_batch_size: int = 1
    eval_batch_size: int = 1
    gradient_accumulation_steps: int = 8
    learning_rate: float = 2e-5
    warmup_ratio: float = 0.03
    output_dir: str = "spaceom"
    wandb_project: str = "spaceom"
    wandb_run_name: str = "spaceom"


def parse_args() -> TrainingConfig:
    default_cfg = TrainingConfig()
    parser = argparse.ArgumentParser(description="Train a VL Spacethinker model with LoRA")
    parser.add_argument("--model_id", default=default_cfg.model_id)
    parser.add_argument("--lora_r", type=int, default=default_cfg.lora_r)
    parser.add_argument("--lora_alpha", type=int, default=default_cfg.lora_alpha)
    parser.add_argument("--lora_dropout", type=float, default=default_cfg.lora_dropout)
    parser.add_argument(
        "--target_modules",
        default=','.join(default_cfg.target_modules),
        help="Comma-separated list of target modules for LoRA"
    )
    parser.add_argument("--num_train_epochs", type=int, default=default_cfg.num_train_epochs)
    parser.add_argument("--train_batch_size", type=int, default=default_cfg.train_batch_size)
    parser.add_argument("--eval_batch_size", type=int, default=default_cfg.eval_batch_size)
    parser.add_argument(
        "--gradient_accumulation_steps", type=int, default=default_cfg.gradient_accumulation_steps
    )
    parser.add_argument("--learning_rate", type=float, default=default_cfg.learning_rate)
    parser.add_argument("--warmup_ratio", type=float, default=default_cfg.warmup_ratio)
    parser.add_argument("--output_dir", default=default_cfg.output_dir)
    parser.add_argument("--wandb_project", default=default_cfg.wandb_project)
    parser.add_argument("--wandb_run_name", default=default_cfg.wandb_run_name)

    args = parser.parse_args()
    return TrainingConfig(
        model_id=args.model_id,
        lora_r=args.lora_r,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        target_modules=args.target_modules.split(","),
        num_train_epochs=args.num_train_epochs,
        train_batch_size=args.train_batch_size,
        eval_batch_size=args.eval_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        learning_rate=args.learning_rate,
        warmup_ratio=args.warmup_ratio,
        output_dir=args.output_dir,
        wandb_project=args.wandb_project,
        wandb_run_name=args.wandb_run_name,
    )


def prepare_datasets(cfg: TrainingConfig):
    print(f"Loading dataset: SpaceThinker")
    raw_train_spacethinker = load_dataset("remyxai/SpaceThinker", split="train")
    raw_eval_spacethinker = load_dataset("remyxai/SpaceThinker", split="test")

    print(f"Loading dataset: SpaceOm")
    raw_train_spaceom = load_dataset("remyxai/SpaceOm", split="train")
    raw_eval_spaceom = load_dataset("remyxai/SpaceOm", split="test")

    print(f"Loading dataset: Robo2VLM")
    raw_train_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="train")
    raw_eval_robo2vlm = load_dataset("remyxai/Robo2VLM-Reasoning", split="test")

    print("Formatting train samples…")
    train_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_train_spacethinker, desc="Train")]
    train_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_train_spaceom, desc="Train")]
    train_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_train_robo2vlm, desc="Train")]
    print("Formatting eval samples…")
    eval_ds_spacethinker = [format_data_spacethinker(s) for s in tqdm(raw_eval_spacethinker, desc="Eval")]
    eval_ds_spaceom = [format_data_spacethinker(s) for s in tqdm(raw_eval_spaceom, desc="Eval")]
    eval_ds_robo2vlm = [format_data_spacethinker(s) for s in tqdm(raw_eval_robo2vlm, desc="Eval")]

    train_ds = train_ds_spacethinker + train_ds_spaceom + train_ds_robo2vlm
    eval_ds = eval_ds_spacethinker + eval_ds_spaceom + eval_ds_robo2vlm
    random.shuffle(train_ds)
    random.shuffle(eval_ds)

    return train_ds, eval_ds


def prepare_model_and_optimizer(cfg: TrainingConfig):
    bnb = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        cfg.model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        quantization_config=bnb
    )
    processor = AutoProcessor.from_pretrained(cfg.model_id)

    peft_cfg = LoraConfig(
        r=cfg.lora_r,
        lora_alpha=cfg.lora_alpha,
        lora_dropout=cfg.lora_dropout,
        bias="none",
        target_modules=cfg.target_modules,
        task_type="CAUSAL_LM",
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    peft_model = get_peft_model(model, peft_cfg).to(device)
    peft_model.print_trainable_parameters()
    return peft_model, processor, peft_cfg


def main():
    cfg = parse_args()
    train_ds, eval_ds = prepare_datasets(cfg)
    model, processor, peft_cfg = prepare_model_and_optimizer(cfg)

    sft_args = SFTConfig(
        output_dir=cfg.output_dir,
        num_train_epochs=cfg.num_train_epochs,
        per_device_train_batch_size=cfg.train_batch_size,
        per_device_eval_batch_size=cfg.eval_batch_size,
        gradient_accumulation_steps=cfg.gradient_accumulation_steps,
        gradient_checkpointing=True,
        optim="adamw_torch_fused",
        learning_rate=cfg.learning_rate,
        lr_scheduler_type="constant",
        logging_steps=10,
        eval_steps=10,
        eval_strategy="steps",
        save_strategy="steps",
        save_steps=20,
        metric_for_best_model="eval_loss",
        greater_is_better=False,
        load_best_model_at_end=True,
        bf16=True,
        tf32=True,
        max_grad_norm=0.3,
        warmup_ratio=cfg.warmup_ratio,
        gradient_checkpointing_kwargs={"use_reentrant": False},
        push_to_hub=True,
        report_to="wandb",
        dataset_kwargs={"skip_prepare_dataset": True},
    )
    sft_args.remove_unused_columns = False

    wandb.init(
        project=cfg.wandb_project,
        name=cfg.wandb_run_name,
        config=sft_args,
    )

    trainer = SFTTrainer(
        model=model,
        args=sft_args,
        train_dataset=train_ds,
        eval_dataset=eval_ds,
        data_collator=lambda ex: collate_fn(ex, processor),
        peft_config=peft_cfg,
        tokenizer=processor.tokenizer,
    )

    trainer.train()
    trainer.save_model(cfg.output_dir)


if __name__ == "__main__":
    main()