|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from flash_attn import flash_attn_varlen_func |
|
from torch.nn import LayerNorm |
|
from transformers.modeling_utils import PreTrainedModel |
|
from .configuration_dots import DotsVisionConfig |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = tensor.dtype |
|
tensor = tensor.float() |
|
|
|
cos = freqs.cos() |
|
sin = freqs.sin() |
|
|
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
|
|
output = (tensor * cos) + (rotate_half(tensor) * sin) |
|
|
|
output = output.to(orig_dtype) |
|
|
|
return output |
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class PatchMerger(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
context_dim: int, |
|
spatial_merge_size: int = 2, |
|
pre_norm="layernorm", |
|
init_merger_std=None, |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = context_dim * (spatial_merge_size**2) |
|
self.pre_norm = pre_norm |
|
if self.pre_norm == "layernorm": |
|
self.ln_q = LayerNorm(context_dim, eps=1e-6) |
|
elif self.pre_norm == "rmsnorm": |
|
self.ln_q = RMSNorm(context_dim, eps=1e-6) |
|
else: |
|
print("no norm in patch merger") |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(self.hidden_size, dim), |
|
) |
|
|
|
if init_merger_std is not None: |
|
nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std) |
|
nn.init.zeros_(self.mlp[0].bias) |
|
nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std) |
|
nn.init.zeros_(self.mlp[2].bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.pre_norm: |
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) |
|
else: |
|
x = self.mlp(x.view(-1, self.hidden_size)) |
|
return x |
|
|
|
|
|
class VisionAttention(nn.Module): |
|
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=bias) |
|
self.proj = nn.Linear(dim, dim, bias=bias) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.full( |
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype |
|
) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 |
|
|
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) |
|
attn_output = torch.matmul(attn_weights, v) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class VisionFlashAttention2(nn.Module): |
|
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=bias) |
|
self.proj = nn.Linear(dim, dim, bias=bias) |
|
self.config = config |
|
self.is_causal = config.is_causal |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = ( |
|
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
) |
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func( |
|
q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal |
|
).reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class VisionSdpaAttention(nn.Module): |
|
def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=bias) |
|
self.proj = nn.Linear(dim, dim, bias=bias) |
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
rotary_pos_emb: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True |
|
|
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
|
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
|
|
DOTS_VISION_ATTENTION_CLASSES = { |
|
"eager": VisionAttention, |
|
"flash_attention_2": VisionFlashAttention2, |
|
"sdpa": VisionSdpaAttention, |
|
} |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
def extra_repr(self) -> str: |
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
def _norm(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
class DotsSwiGLUFFN(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
hidden_features = config.intermediate_size |
|
in_features = config.embed_dim |
|
bias = config.use_bias |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) |
|
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) |
|
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = F.silu(self.fc1(x)) * self.fc3(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
|
|
class DotsPatchEmbed(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_channels = config.num_channels |
|
self.patch_size = config.patch_size |
|
self.temporal_patch_size = config.temporal_patch_size |
|
self.embed_dim = config.embed_dim |
|
self.config = config |
|
self.proj = nn.Conv2d( |
|
config.num_channels, |
|
config.embed_dim, |
|
kernel_size=(config.patch_size, config.patch_size), |
|
stride=(config.patch_size, config.patch_size), |
|
) |
|
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps) |
|
|
|
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor: |
|
x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0] |
|
x = self.proj(x).view(-1, self.embed_dim) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class DotsViTPreprocessor(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.patch_h = config.patch_size |
|
self.patch_w = config.patch_size |
|
self.embed_dim = config.embed_dim |
|
self.config = config |
|
self.patchifier = DotsPatchEmbed(config) |
|
|
|
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor: |
|
tokens = self.patchifier(x, grid_thw) |
|
return tokens |
|
|
|
|
|
class DotsVisionBlock(nn.Module): |
|
def __init__(self, config, attn_implementation: str = "flash_attention_2"): |
|
super().__init__() |
|
self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation]( |
|
config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias |
|
) |
|
self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps) |
|
self.mlp = DotsSwiGLUFFN(config) |
|
self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps) |
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: |
|
hidden_states = hidden_states + self.attn( |
|
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb |
|
) |
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
return hidden_states |
|
|
|
|
|
class DotsVisionTransformer(PreTrainedModel): |
|
def __init__(self, config: DotsVisionConfig) -> None: |
|
super().__init__(config) |
|
self.config = config |
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
|
self.patch_embed = DotsViTPreprocessor(config) |
|
self._init_weights(self.patch_embed.patchifier.proj) |
|
|
|
head_dim = config.embed_dim // config.num_attention_heads |
|
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) |
|
|
|
_num_hidden_layers = config.num_hidden_layers |
|
self.blocks = nn.ModuleList( |
|
[DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)] |
|
) |
|
|
|
if self.config.post_norm: |
|
self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps) |
|
|
|
self.merger = PatchMerger( |
|
dim=config.hidden_size, |
|
context_dim=config.embed_dim, |
|
spatial_merge_size=config.spatial_merge_size, |
|
init_merger_std=self.config.init_merger_std, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv3d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
return self.blocks[0].mlp.fc2.weight.dtype |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self.blocks[0].mlp.fc2.weight.device |
|
|
|
def get_pos_ids_by_grid(self, grid_thw): |
|
pos_ids = [] |
|
for t, h, w in grid_thw: |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append( |
|
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1) |
|
) |
|
|
|
return pos_ids |
|
|
|
def rot_pos_emb(self, grid_thw): |
|
pos_ids = self.get_pos_ids_by_grid(grid_thw) |
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_thw[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
return rotary_pos_emb |
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor: |
|
if bf16: |
|
hidden_states = hidden_states.bfloat16() |
|
hidden_states = self.patch_embed(hidden_states, grid_thw) |
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
dim=0, |
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
for blk in self.blocks: |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
blk.__call__, |
|
hidden_states, |
|
cu_seqlens, |
|
rotary_pos_emb, |
|
use_reentrant=(self.config.ckpt_use_reentrant or self.config.ve_ckpt_use_reentrant), |
|
) |
|
else: |
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) |
|
|
|
if self.config.post_norm: |
|
hidden_states = self.post_trunk_norm(hidden_states) |
|
|
|
hidden_states = self.merger(hidden_states) |
|
return hidden_states |