dots.ocr / modeling_dots_ocr.py
redmoe-ai-v1's picture
Upload folder using huggingface_hub
e1cb4af verified
from typing import List, Optional, Tuple, Union
import torch
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.qwen2 import Qwen2ForCausalLM
from .configuration_dots import DotsVisionConfig, DotsOCRConfig
from .modeling_dots_vision import DotsVisionTransformer
DOTS_VLM_MAX_IMAGES = 200
class DotsOCRForCausalLM(Qwen2ForCausalLM):
config_class = DotsOCRConfig
def __init__(self, config: DotsOCRConfig):
super().__init__(config)
if isinstance(self.config.vision_config, dict):
vision_config = DotsVisionConfig(**self.config.vision_config)
self.config.vision_config = vision_config
else:
vision_config = self.config.vision_config
self.vision_tower = DotsVisionTransformer(vision_config)
def prepare_inputs_embeds(
self,
input_ids: torch.LongTensor,
pixel_values: Optional[torch.FloatTensor] = None,
grid_thw: Optional[torch.FloatTensor] = None,
img_mask: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
assert img_mask is not None
if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
print(
f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
)
vision_embeddings = self.vision_tower(pixel_values, grid_thw)
true_indices = torch.nonzero(img_mask).squeeze()
if len(true_indices) > vision_embeddings.size(0):
print(
f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
)
true_indices = true_indices[: vision_embeddings.size(0)]
new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
else:
new_img_mask = img_mask
assert (
vision_embeddings.size(0) == new_img_mask.sum()
), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
inputs_embeds = inputs_embeds.masked_scatter(
new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
)
return inputs_embeds
def forward(
self,
input_ids: torch.LongTensor,
pixel_values: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
logits_to_keep: int = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
if inputs_embeds is None:
img_mask = input_ids == self.config.image_token_id
inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
outputs = super().forward(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=labels,
use_cache=use_cache if use_cache is not None else self.config.use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
# return_dict=return_dict,
logits_to_keep=logits_to_keep,
**loss_kwargs,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
num_logits_to_keep=None,
**kwargs,
):
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
return model_inputs