import os os.environ["USE_TF"] = "1" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import datetime import hashlib import multiprocessing as mp import time import numpy as np import psutil import tensorflow as tf from tensorflow.keras import mixed_precision from tqdm.auto import tqdm from doctr.models import login_to_hub, push_to_hf_hub gpu_devices = tf.config.experimental.list_physical_devices("GPU") if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr import transforms as T from doctr.datasets import DataLoader, DetectionDataset from doctr.models import detection from doctr.utils.metrics import LocalizationConfusion from utils import EarlyStopper, load_backbone, plot_recorder, plot_samples def record_lr( model: tf.keras.Model, train_loader: DataLoader, batch_transforms, optimizer, start_lr: float = 1e-7, end_lr: float = 1, num_it: int = 100, amp: bool = False, ): """Gridsearch the optimal learning rate for the training. Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py """ if num_it > len(train_loader): raise ValueError("the value of `num_it` needs to be lower than the number of available batches") # Update param groups & LR gamma = (end_lr / start_lr) ** (1 / (num_it - 1)) optimizer.learning_rate = start_lr lr_recorder = [start_lr * gamma**idx for idx in range(num_it)] loss_recorder = [] for batch_idx, (images, targets) in enumerate(train_loader): images = batch_transforms(images) # Forward, Backward & update with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) optimizer.learning_rate = optimizer.learning_rate * gamma # Record train_loss = train_loss.numpy() if np.any(np.isnan(train_loss)): if batch_idx == 0: raise ValueError("loss value is NaN or inf.") else: break loss_recorder.append(train_loss.mean()) # Stop after the number of iterations if batch_idx + 1 == num_it: break return lr_recorder[: len(loss_recorder)], loss_recorder def fit_one_epoch(model, train_loader, batch_transforms, optimizer, amp=False): train_iter = iter(train_loader) # Iterate over the batches of the dataset pbar = tqdm(train_iter, position=1) for images, targets in pbar: images = batch_transforms(images) with tf.GradientTape() as tape: train_loss = model(images, targets, training=True)["loss"] grads = tape.gradient(train_loss, model.trainable_weights) if amp: grads = optimizer.get_unscaled_gradients(grads) optimizer.apply_gradients(zip(grads, model.trainable_weights)) pbar.set_description(f"Training loss: {train_loss.numpy():.6}") def evaluate(model, val_loader, batch_transforms, val_metric): # Reset val metric val_metric.reset() # Validation loop val_loss, batch_cnt = 0, 0 val_iter = iter(val_loader) for images, targets in tqdm(val_iter): images = batch_transforms(images) out = model(images, targets, training=False, return_preds=True) # Compute metric loc_preds = out["preds"] for target, loc_pred in zip(targets, loc_preds): for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()): if args.rotation and args.eval_straight: # Convert pred to boxes [xmin, ymin, xmax, ymax] N, 4, 2 --> N, 4 boxes_pred = np.concatenate((boxes_pred.min(axis=1), boxes_pred.max(axis=1)), axis=-1) val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :4]) val_loss += out["loss"].numpy() batch_cnt += 1 val_loss /= batch_cnt recall, precision, mean_iou = val_metric.summary() return val_loss, recall, precision, mean_iou def main(args): print(args) if args.push_to_hub: login_to_hub() if not isinstance(args.workers, int): args.workers = min(16, mp.cpu_count()) system_available_memory = int(psutil.virtual_memory().available / 1024**3) # AMP if args.amp: mixed_precision.set_global_policy("mixed_float16") st = time.time() val_set = DetectionDataset( img_folder=os.path.join(args.val_path, "images"), label_path=os.path.join(args.val_path, "labels.json"), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation or args.eval_straight else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad T.RandomApply(T.RandomRotate(90, expand=True), 0.5), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation and not args.eval_straight else [] ) ), use_polygons=args.rotation and not args.eval_straight, ) val_loader = DataLoader( val_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers, ) print( f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in " f"{val_loader.num_batches} batches)" ) with open(os.path.join(args.val_path, "labels.json"), "rb") as f: val_hash = hashlib.sha256(f.read()).hexdigest() batch_transforms = T.Compose([ T.Normalize(mean=(0.798, 0.785, 0.772), std=(0.264, 0.2749, 0.287)), ]) # Load doctr model model = detection.__dict__[args.arch]( pretrained=args.pretrained, input_shape=(args.input_size, args.input_size, 3), assume_straight_pages=not args.rotation, class_names=val_set.class_names, ) # Resume weights if isinstance(args.resume, str): model.load_weights(args.resume) if isinstance(args.pretrained_backbone, str): print("Loading backbone weights.") model = load_backbone(model, args.pretrained_backbone) print("Done.") # Metrics val_metric = LocalizationConfusion( use_polygons=args.rotation and not args.eval_straight, mask_shape=(args.input_size, args.input_size), use_broadcasting=True if system_available_memory > 62 else False, ) if args.test_only: print("Running evaluation") val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric) print( f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | " f"Mean IoU: {mean_iou:.2%})" ) return st = time.time() # Load both train and val data generators train_set = DetectionDataset( img_folder=os.path.join(args.train_path, "images"), label_path=os.path.join(args.train_path, "labels.json"), img_transforms=T.Compose([ # Augmentations T.RandomApply(T.ColorInversion(), 0.1), T.RandomJpegQuality(60), T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1), T.RandomApply(T.RandomShadow(), 0.4), T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3), T.RandomSaturation(0.3), T.RandomContrast(0.3), T.RandomBrightness(0.3), T.RandomApply(T.ToGray(num_output_channels=3), 0.1), ]), sample_transforms=T.SampleCompose( ( [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)] if not args.rotation else [] ) + ( [ T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad T.RandomApply(T.RandomRotate(90, expand=True), 0.5), T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True), ] if args.rotation else [] ) ), use_polygons=args.rotation, ) train_loader = DataLoader( train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers, ) print( f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in " f"{train_loader.num_batches} batches)" ) with open(os.path.join(args.train_path, "labels.json"), "rb") as f: train_hash = hashlib.sha256(f.read()).hexdigest() if args.show_samples: x, target = next(iter(train_loader)) plot_samples(x, target) return # Optimizer scheduler = tf.keras.optimizers.schedules.ExponentialDecay( args.lr, decay_steps=args.epochs * len(train_loader), decay_rate=1 / (25e4), # final lr as a fraction of initial lr staircase=False, name="ExponentialDecay", ) optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5) if args.amp: optimizer = mixed_precision.LossScaleOptimizer(optimizer) # LR Finder if args.find_lr: lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp) plot_recorder(lrs, losses) return # Tensorboard to monitor training current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name config = { "learning_rate": args.lr, "epochs": args.epochs, "batch_size": args.batch_size, "architecture": args.arch, "input_size": args.input_size, "optimizer": optimizer.name, "framework": "tensorflow", "scheduler": scheduler.name, "train_hash": train_hash, "val_hash": val_hash, "pretrained": args.pretrained, "rotation": args.rotation, } # W&B if args.wb: import wandb run = wandb.init(name=exp_name, project="text-detection", config=config) # ClearML if args.clearml: from clearml import Task task = Task.init(project_name="docTR/text-detection", task_name=exp_name, reuse_last_task_id=False) task.upload_artifact("config", config) if args.freeze_backbone: for layer in model.feat_extractor.layers: layer.trainable = False min_loss = np.inf if args.early_stop: early_stopper = EarlyStopper(patience=args.early_stop_epochs, min_delta=args.early_stop_delta) # Training loop for epoch in range(args.epochs): fit_one_epoch(model, train_loader, batch_transforms, optimizer, args.amp) # Validation loop at the end of each epoch val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric) if val_loss < min_loss: print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...") model.save_weights(f"./{exp_name}/weights") min_loss = val_loss log_msg = f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} " if any(val is None for val in (recall, precision, mean_iou)): log_msg += "(Undefined metric value, caused by empty GTs or predictions)" else: log_msg += f"(Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%})" print(log_msg) # W&B if args.wb: wandb.log({ "val_loss": val_loss, "recall": recall, "precision": precision, "mean_iou": mean_iou, }) # ClearML if args.clearml: from clearml import Logger logger = Logger.current_logger() logger.report_scalar(title="Validation Loss", series="val_loss", value=val_loss, iteration=epoch) logger.report_scalar(title="Precision Recall", series="recall", value=recall, iteration=epoch) logger.report_scalar(title="Precision Recall", series="precision", value=precision, iteration=epoch) logger.report_scalar(title="Mean IoU", series="mean_iou", value=mean_iou, iteration=epoch) if args.early_stop and early_stopper.early_stop(val_loss): print("Training halted early due to reaching patience limit.") break if args.wb: run.finish() if args.push_to_hub: push_to_hf_hub(model, exp_name, task="detection", run_config=args) def parse_args(): import argparse parser = argparse.ArgumentParser( description="DocTR training script for text detection (TensorFlow)", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("arch", type=str, help="text-detection model to train") parser.add_argument("--train_path", type=str, required=True, help="path to training data folder") parser.add_argument("--val_path", type=str, help="path to validation data folder") parser.add_argument("--name", type=str, default=None, help="Name of your training experiment") parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on") parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training") parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W") parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)") parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading") parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint") parser.add_argument("--pretrained-backbone", type=str, default=None, help="Path to your backbone weights") parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop") parser.add_argument( "--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning" ) parser.add_argument( "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples" ) parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases") parser.add_argument("--clearml", dest="clearml", action="store_true", help="Log to ClearML") parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub") parser.add_argument( "--pretrained", dest="pretrained", action="store_true", help="Load pretrained parameters before starting the training", ) parser.add_argument("--rotation", dest="rotation", action="store_true", help="train with rotated documents") parser.add_argument( "--eval-straight", action="store_true", help="metrics evaluation with straight boxes instead of polygons to save time + memory", ) parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true") parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR") parser.add_argument("--early-stop", action="store_true", help="Enable early stopping") parser.add_argument("--early-stop-epochs", type=int, default=5, help="Patience for early stopping") parser.add_argument("--early-stop-delta", type=float, default=0.01, help="Minimum Delta for early stopping") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(args)