File size: 16,262 Bytes
0fcfeda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import os
os.environ["USE_TF"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import datetime
import hashlib
import multiprocessing as mp
import time
import numpy as np
import psutil
import tensorflow as tf
from tensorflow.keras import mixed_precision
from tqdm.auto import tqdm
from doctr.models import login_to_hub, push_to_hf_hub
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
if any(gpu_devices):
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
from doctr import transforms as T
from doctr.datasets import DataLoader, DetectionDataset
from doctr.models import detection
from doctr.utils.metrics import LocalizationConfusion
from utils import EarlyStopper, load_backbone, plot_recorder, plot_samples
def record_lr(
model: tf.keras.Model,
train_loader: DataLoader,
batch_transforms,
optimizer,
start_lr: float = 1e-7,
end_lr: float = 1,
num_it: int = 100,
amp: bool = False,
):
"""Gridsearch the optimal learning rate for the training.
Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py
"""
if num_it > len(train_loader):
raise ValueError("the value of `num_it` needs to be lower than the number of available batches")
# Update param groups & LR
gamma = (end_lr / start_lr) ** (1 / (num_it - 1))
optimizer.learning_rate = start_lr
lr_recorder = [start_lr * gamma**idx for idx in range(num_it)]
loss_recorder = []
for batch_idx, (images, targets) in enumerate(train_loader):
images = batch_transforms(images)
# Forward, Backward & update
with tf.GradientTape() as tape:
train_loss = model(images, targets, training=True)["loss"]
grads = tape.gradient(train_loss, model.trainable_weights)
if amp:
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
optimizer.learning_rate = optimizer.learning_rate * gamma
# Record
train_loss = train_loss.numpy()
if np.any(np.isnan(train_loss)):
if batch_idx == 0:
raise ValueError("loss value is NaN or inf.")
else:
break
loss_recorder.append(train_loss.mean())
# Stop after the number of iterations
if batch_idx + 1 == num_it:
break
return lr_recorder[: len(loss_recorder)], loss_recorder
def fit_one_epoch(model, train_loader, batch_transforms, optimizer, amp=False):
train_iter = iter(train_loader)
# Iterate over the batches of the dataset
pbar = tqdm(train_iter, position=1)
for images, targets in pbar:
images = batch_transforms(images)
with tf.GradientTape() as tape:
train_loss = model(images, targets, training=True)["loss"]
grads = tape.gradient(train_loss, model.trainable_weights)
if amp:
grads = optimizer.get_unscaled_gradients(grads)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
pbar.set_description(f"Training loss: {train_loss.numpy():.6}")
def evaluate(model, val_loader, batch_transforms, val_metric):
# Reset val metric
val_metric.reset()
# Validation loop
val_loss, batch_cnt = 0, 0
val_iter = iter(val_loader)
for images, targets in tqdm(val_iter):
images = batch_transforms(images)
out = model(images, targets, training=False, return_preds=True)
# Compute metric
loc_preds = out["preds"]
for target, loc_pred in zip(targets, loc_preds):
for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()):
if args.rotation and args.eval_straight:
# Convert pred to boxes [xmin, ymin, xmax, ymax] N, 4, 2 --> N, 4
boxes_pred = np.concatenate((boxes_pred.min(axis=1), boxes_pred.max(axis=1)), axis=-1)
val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :4])
val_loss += out["loss"].numpy()
batch_cnt += 1
val_loss /= batch_cnt
recall, precision, mean_iou = val_metric.summary()
return val_loss, recall, precision, mean_iou
def main(args):
print(args)
if args.push_to_hub:
login_to_hub()
if not isinstance(args.workers, int):
args.workers = min(16, mp.cpu_count())
system_available_memory = int(psutil.virtual_memory().available / 1024**3)
# AMP
if args.amp:
mixed_precision.set_global_policy("mixed_float16")
st = time.time()
val_set = DetectionDataset(
img_folder=os.path.join(args.val_path, "images"),
label_path=os.path.join(args.val_path, "labels.json"),
sample_transforms=T.SampleCompose(
(
[T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)]
if not args.rotation or args.eval_straight
else []
)
+ (
[
T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad
T.RandomApply(T.RandomRotate(90, expand=True), 0.5),
T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True),
]
if args.rotation and not args.eval_straight
else []
)
),
use_polygons=args.rotation and not args.eval_straight,
)
val_loader = DataLoader(
val_set,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
num_workers=args.workers,
)
print(
f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in "
f"{val_loader.num_batches} batches)"
)
with open(os.path.join(args.val_path, "labels.json"), "rb") as f:
val_hash = hashlib.sha256(f.read()).hexdigest()
batch_transforms = T.Compose([
T.Normalize(mean=(0.798, 0.785, 0.772), std=(0.264, 0.2749, 0.287)),
])
# Load doctr model
model = detection.__dict__[args.arch](
pretrained=args.pretrained,
input_shape=(args.input_size, args.input_size, 3),
assume_straight_pages=not args.rotation,
class_names=val_set.class_names,
)
# Resume weights
if isinstance(args.resume, str):
model.load_weights(args.resume)
if isinstance(args.pretrained_backbone, str):
print("Loading backbone weights.")
model = load_backbone(model, args.pretrained_backbone)
print("Done.")
# Metrics
val_metric = LocalizationConfusion(
use_polygons=args.rotation and not args.eval_straight,
mask_shape=(args.input_size, args.input_size),
use_broadcasting=True if system_available_memory > 62 else False,
)
if args.test_only:
print("Running evaluation")
val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric)
print(
f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | "
f"Mean IoU: {mean_iou:.2%})"
)
return
st = time.time()
# Load both train and val data generators
train_set = DetectionDataset(
img_folder=os.path.join(args.train_path, "images"),
label_path=os.path.join(args.train_path, "labels.json"),
img_transforms=T.Compose([
# Augmentations
T.RandomApply(T.ColorInversion(), 0.1),
T.RandomJpegQuality(60),
T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
T.RandomApply(T.RandomShadow(), 0.4),
T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
T.RandomSaturation(0.3),
T.RandomContrast(0.3),
T.RandomBrightness(0.3),
T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
]),
sample_transforms=T.SampleCompose(
(
[T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)]
if not args.rotation
else []
)
+ (
[
T.Resize(args.input_size, preserve_aspect_ratio=True), # This does not pad
T.RandomApply(T.RandomRotate(90, expand=True), 0.5),
T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True),
]
if args.rotation
else []
)
),
use_polygons=args.rotation,
)
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
num_workers=args.workers,
)
print(
f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in "
f"{train_loader.num_batches} batches)"
)
with open(os.path.join(args.train_path, "labels.json"), "rb") as f:
train_hash = hashlib.sha256(f.read()).hexdigest()
if args.show_samples:
x, target = next(iter(train_loader))
plot_samples(x, target)
return
# Optimizer
scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
args.lr,
decay_steps=args.epochs * len(train_loader),
decay_rate=1 / (25e4), # final lr as a fraction of initial lr
staircase=False,
name="ExponentialDecay",
)
optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5)
if args.amp:
optimizer = mixed_precision.LossScaleOptimizer(optimizer)
# LR Finder
if args.find_lr:
lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp)
plot_recorder(lrs, losses)
return
# Tensorboard to monitor training
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name
config = {
"learning_rate": args.lr,
"epochs": args.epochs,
"batch_size": args.batch_size,
"architecture": args.arch,
"input_size": args.input_size,
"optimizer": optimizer.name,
"framework": "tensorflow",
"scheduler": scheduler.name,
"train_hash": train_hash,
"val_hash": val_hash,
"pretrained": args.pretrained,
"rotation": args.rotation,
}
# W&B
if args.wb:
import wandb
run = wandb.init(name=exp_name, project="text-detection", config=config)
# ClearML
if args.clearml:
from clearml import Task
task = Task.init(project_name="docTR/text-detection", task_name=exp_name, reuse_last_task_id=False)
task.upload_artifact("config", config)
if args.freeze_backbone:
for layer in model.feat_extractor.layers:
layer.trainable = False
min_loss = np.inf
if args.early_stop:
early_stopper = EarlyStopper(patience=args.early_stop_epochs, min_delta=args.early_stop_delta)
# Training loop
for epoch in range(args.epochs):
fit_one_epoch(model, train_loader, batch_transforms, optimizer, args.amp)
# Validation loop at the end of each epoch
val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric)
if val_loss < min_loss:
print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...")
model.save_weights(f"./{exp_name}/weights")
min_loss = val_loss
log_msg = f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} "
if any(val is None for val in (recall, precision, mean_iou)):
log_msg += "(Undefined metric value, caused by empty GTs or predictions)"
else:
log_msg += f"(Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%})"
print(log_msg)
# W&B
if args.wb:
wandb.log({
"val_loss": val_loss,
"recall": recall,
"precision": precision,
"mean_iou": mean_iou,
})
# ClearML
if args.clearml:
from clearml import Logger
logger = Logger.current_logger()
logger.report_scalar(title="Validation Loss", series="val_loss", value=val_loss, iteration=epoch)
logger.report_scalar(title="Precision Recall", series="recall", value=recall, iteration=epoch)
logger.report_scalar(title="Precision Recall", series="precision", value=precision, iteration=epoch)
logger.report_scalar(title="Mean IoU", series="mean_iou", value=mean_iou, iteration=epoch)
if args.early_stop and early_stopper.early_stop(val_loss):
print("Training halted early due to reaching patience limit.")
break
if args.wb:
run.finish()
if args.push_to_hub:
push_to_hf_hub(model, exp_name, task="detection", run_config=args)
def parse_args():
import argparse
parser = argparse.ArgumentParser(
description="DocTR training script for text detection (TensorFlow)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("arch", type=str, help="text-detection model to train")
parser.add_argument("--train_path", type=str, required=True, help="path to training data folder")
parser.add_argument("--val_path", type=str, help="path to validation data folder")
parser.add_argument("--name", type=str, default=None, help="Name of your training experiment")
parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on")
parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training")
parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W")
parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)")
parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading")
parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint")
parser.add_argument("--pretrained-backbone", type=str, default=None, help="Path to your backbone weights")
parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop")
parser.add_argument(
"--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning"
)
parser.add_argument(
"--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples"
)
parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases")
parser.add_argument("--clearml", dest="clearml", action="store_true", help="Log to ClearML")
parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub")
parser.add_argument(
"--pretrained",
dest="pretrained",
action="store_true",
help="Load pretrained parameters before starting the training",
)
parser.add_argument("--rotation", dest="rotation", action="store_true", help="train with rotated documents")
parser.add_argument(
"--eval-straight",
action="store_true",
help="metrics evaluation with straight boxes instead of polygons to save time + memory",
)
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR")
parser.add_argument("--early-stop", action="store_true", help="Enable early stopping")
parser.add_argument("--early-stop-epochs", type=int, default=5, help="Patience for early stopping")
parser.add_argument("--early-stop-delta", type=float, default=0.01, help="Minimum Delta for early stopping")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args) |