File size: 16,262 Bytes
0fcfeda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import os

os.environ["USE_TF"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

import datetime
import hashlib
import multiprocessing as mp
import time

import numpy as np
import psutil
import tensorflow as tf
from tensorflow.keras import mixed_precision
from tqdm.auto import tqdm

from doctr.models import login_to_hub, push_to_hf_hub

gpu_devices = tf.config.experimental.list_physical_devices("GPU")
if any(gpu_devices):
    tf.config.experimental.set_memory_growth(gpu_devices[0], True)

from doctr import transforms as T
from doctr.datasets import DataLoader, DetectionDataset
from doctr.models import detection
from doctr.utils.metrics import LocalizationConfusion
from utils import EarlyStopper, load_backbone, plot_recorder, plot_samples


def record_lr(
    model: tf.keras.Model,
    train_loader: DataLoader,
    batch_transforms,
    optimizer,
    start_lr: float = 1e-7,
    end_lr: float = 1,
    num_it: int = 100,
    amp: bool = False,
):
    """Gridsearch the optimal learning rate for the training.
    Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py
    """
    if num_it > len(train_loader):
        raise ValueError("the value of `num_it` needs to be lower than the number of available batches")

    # Update param groups & LR
    gamma = (end_lr / start_lr) ** (1 / (num_it - 1))
    optimizer.learning_rate = start_lr

    lr_recorder = [start_lr * gamma**idx for idx in range(num_it)]
    loss_recorder = []

    for batch_idx, (images, targets) in enumerate(train_loader):
        images = batch_transforms(images)

        # Forward, Backward & update
        with tf.GradientTape() as tape:
            train_loss = model(images, targets, training=True)["loss"]
        grads = tape.gradient(train_loss, model.trainable_weights)

        if amp:
            grads = optimizer.get_unscaled_gradients(grads)
        optimizer.apply_gradients(zip(grads, model.trainable_weights))

        optimizer.learning_rate = optimizer.learning_rate * gamma

        # Record
        train_loss = train_loss.numpy()
        if np.any(np.isnan(train_loss)):
            if batch_idx == 0:
                raise ValueError("loss value is NaN or inf.")
            else:
                break
        loss_recorder.append(train_loss.mean())
        # Stop after the number of iterations
        if batch_idx + 1 == num_it:
            break

    return lr_recorder[: len(loss_recorder)], loss_recorder


def fit_one_epoch(model, train_loader, batch_transforms, optimizer, amp=False):
    train_iter = iter(train_loader)
    # Iterate over the batches of the dataset
    pbar = tqdm(train_iter, position=1)
    for images, targets in pbar:
        images = batch_transforms(images)

        with tf.GradientTape() as tape:
            train_loss = model(images, targets, training=True)["loss"]
        grads = tape.gradient(train_loss, model.trainable_weights)
        if amp:
            grads = optimizer.get_unscaled_gradients(grads)
        optimizer.apply_gradients(zip(grads, model.trainable_weights))

        pbar.set_description(f"Training loss: {train_loss.numpy():.6}")


def evaluate(model, val_loader, batch_transforms, val_metric):
    # Reset val metric
    val_metric.reset()
    # Validation loop
    val_loss, batch_cnt = 0, 0
    val_iter = iter(val_loader)
    for images, targets in tqdm(val_iter):
        images = batch_transforms(images)
        out = model(images, targets, training=False, return_preds=True)
        # Compute metric
        loc_preds = out["preds"]
        for target, loc_pred in zip(targets, loc_preds):
            for boxes_gt, boxes_pred in zip(target.values(), loc_pred.values()):
                if args.rotation and args.eval_straight:
                    # Convert pred to boxes [xmin, ymin, xmax, ymax]  N, 4, 2 --> N, 4
                    boxes_pred = np.concatenate((boxes_pred.min(axis=1), boxes_pred.max(axis=1)), axis=-1)
                val_metric.update(gts=boxes_gt, preds=boxes_pred[:, :4])

        val_loss += out["loss"].numpy()
        batch_cnt += 1

    val_loss /= batch_cnt
    recall, precision, mean_iou = val_metric.summary()
    return val_loss, recall, precision, mean_iou


def main(args):
    print(args)

    if args.push_to_hub:
        login_to_hub()

    if not isinstance(args.workers, int):
        args.workers = min(16, mp.cpu_count())

    system_available_memory = int(psutil.virtual_memory().available / 1024**3)

    # AMP
    if args.amp:
        mixed_precision.set_global_policy("mixed_float16")

    st = time.time()
    val_set = DetectionDataset(
        img_folder=os.path.join(args.val_path, "images"),
        label_path=os.path.join(args.val_path, "labels.json"),
        sample_transforms=T.SampleCompose(
            (
                [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)]
                if not args.rotation or args.eval_straight
                else []
            )
            + (
                [
                    T.Resize(args.input_size, preserve_aspect_ratio=True),  # This does not pad
                    T.RandomApply(T.RandomRotate(90, expand=True), 0.5),
                    T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True),
                ]
                if args.rotation and not args.eval_straight
                else []
            )
        ),
        use_polygons=args.rotation and not args.eval_straight,
    )
    val_loader = DataLoader(
        val_set,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.workers,
    )
    print(
        f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in "
        f"{val_loader.num_batches} batches)"
    )
    with open(os.path.join(args.val_path, "labels.json"), "rb") as f:
        val_hash = hashlib.sha256(f.read()).hexdigest()

    batch_transforms = T.Compose([
        T.Normalize(mean=(0.798, 0.785, 0.772), std=(0.264, 0.2749, 0.287)),
    ])

    # Load doctr model
    model = detection.__dict__[args.arch](
        pretrained=args.pretrained,
        input_shape=(args.input_size, args.input_size, 3),
        assume_straight_pages=not args.rotation,
        class_names=val_set.class_names,
    )

    # Resume weights
    if isinstance(args.resume, str):
        model.load_weights(args.resume)

    if isinstance(args.pretrained_backbone, str):
        print("Loading backbone weights.")
        model = load_backbone(model, args.pretrained_backbone)
        print("Done.")

    # Metrics
    val_metric = LocalizationConfusion(
        use_polygons=args.rotation and not args.eval_straight,
        mask_shape=(args.input_size, args.input_size),
        use_broadcasting=True if system_available_memory > 62 else False,
    )
    if args.test_only:
        print("Running evaluation")
        val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric)
        print(
            f"Validation loss: {val_loss:.6} (Recall: {recall:.2%} | Precision: {precision:.2%} | "
            f"Mean IoU: {mean_iou:.2%})"
        )
        return

    st = time.time()
    # Load both train and val data generators
    train_set = DetectionDataset(
        img_folder=os.path.join(args.train_path, "images"),
        label_path=os.path.join(args.train_path, "labels.json"),
        img_transforms=T.Compose([
            # Augmentations
            T.RandomApply(T.ColorInversion(), 0.1),
            T.RandomJpegQuality(60),
            T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
            T.RandomApply(T.RandomShadow(), 0.4),
            T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
            T.RandomSaturation(0.3),
            T.RandomContrast(0.3),
            T.RandomBrightness(0.3),
            T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
        ]),
        sample_transforms=T.SampleCompose(
            (
                [T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True)]
                if not args.rotation
                else []
            )
            + (
                [
                    T.Resize(args.input_size, preserve_aspect_ratio=True),  # This does not pad
                    T.RandomApply(T.RandomRotate(90, expand=True), 0.5),
                    T.Resize((args.input_size, args.input_size), preserve_aspect_ratio=True, symmetric_pad=True),
                ]
                if args.rotation
                else []
            )
        ),
        use_polygons=args.rotation,
    )
    train_loader = DataLoader(
        train_set,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=True,
        num_workers=args.workers,
    )
    print(
        f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in "
        f"{train_loader.num_batches} batches)"
    )
    with open(os.path.join(args.train_path, "labels.json"), "rb") as f:
        train_hash = hashlib.sha256(f.read()).hexdigest()

    if args.show_samples:
        x, target = next(iter(train_loader))
        plot_samples(x, target)
        return

    # Optimizer
    scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
        args.lr,
        decay_steps=args.epochs * len(train_loader),
        decay_rate=1 / (25e4),  # final lr as a fraction of initial lr
        staircase=False,
        name="ExponentialDecay",
    )
    optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5)
    if args.amp:
        optimizer = mixed_precision.LossScaleOptimizer(optimizer)
    # LR Finder
    if args.find_lr:
        lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp)
        plot_recorder(lrs, losses)
        return

    # Tensorboard to monitor training
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name

    config = {
        "learning_rate": args.lr,
        "epochs": args.epochs,
        "batch_size": args.batch_size,
        "architecture": args.arch,
        "input_size": args.input_size,
        "optimizer": optimizer.name,
        "framework": "tensorflow",
        "scheduler": scheduler.name,
        "train_hash": train_hash,
        "val_hash": val_hash,
        "pretrained": args.pretrained,
        "rotation": args.rotation,
    }

    # W&B
    if args.wb:
        import wandb

        run = wandb.init(name=exp_name, project="text-detection", config=config)

    # ClearML
    if args.clearml:
        from clearml import Task

        task = Task.init(project_name="docTR/text-detection", task_name=exp_name, reuse_last_task_id=False)
        task.upload_artifact("config", config)

    if args.freeze_backbone:
        for layer in model.feat_extractor.layers:
            layer.trainable = False

    min_loss = np.inf
    if args.early_stop:
        early_stopper = EarlyStopper(patience=args.early_stop_epochs, min_delta=args.early_stop_delta)

    # Training loop
    for epoch in range(args.epochs):
        fit_one_epoch(model, train_loader, batch_transforms, optimizer, args.amp)
        # Validation loop at the end of each epoch
        val_loss, recall, precision, mean_iou = evaluate(model, val_loader, batch_transforms, val_metric)
        if val_loss < min_loss:
            print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...")
            model.save_weights(f"./{exp_name}/weights")
            min_loss = val_loss
        log_msg = f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} "
        if any(val is None for val in (recall, precision, mean_iou)):
            log_msg += "(Undefined metric value, caused by empty GTs or predictions)"
        else:
            log_msg += f"(Recall: {recall:.2%} | Precision: {precision:.2%} | Mean IoU: {mean_iou:.2%})"
        print(log_msg)
        # W&B
        if args.wb:
            wandb.log({
                "val_loss": val_loss,
                "recall": recall,
                "precision": precision,
                "mean_iou": mean_iou,
            })

        # ClearML
        if args.clearml:
            from clearml import Logger

            logger = Logger.current_logger()
            logger.report_scalar(title="Validation Loss", series="val_loss", value=val_loss, iteration=epoch)
            logger.report_scalar(title="Precision Recall", series="recall", value=recall, iteration=epoch)
            logger.report_scalar(title="Precision Recall", series="precision", value=precision, iteration=epoch)
            logger.report_scalar(title="Mean IoU", series="mean_iou", value=mean_iou, iteration=epoch)
        if args.early_stop and early_stopper.early_stop(val_loss):
            print("Training halted early due to reaching patience limit.")
            break
    if args.wb:
        run.finish()

    if args.push_to_hub:
        push_to_hf_hub(model, exp_name, task="detection", run_config=args)


def parse_args():
    import argparse

    parser = argparse.ArgumentParser(
        description="DocTR training script for text detection (TensorFlow)",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser.add_argument("arch", type=str, help="text-detection model to train")
    parser.add_argument("--train_path", type=str, required=True, help="path to training data folder")
    parser.add_argument("--val_path", type=str, help="path to validation data folder")
    parser.add_argument("--name", type=str, default=None, help="Name of your training experiment")
    parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on")
    parser.add_argument("-b", "--batch_size", type=int, default=2, help="batch size for training")
    parser.add_argument("--input_size", type=int, default=1024, help="model input size, H = W")
    parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)")
    parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading")
    parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint")
    parser.add_argument("--pretrained-backbone", type=str, default=None, help="Path to your backbone weights")
    parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop")
    parser.add_argument(
        "--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning"
    )
    parser.add_argument(
        "--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples"
    )
    parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases")
    parser.add_argument("--clearml", dest="clearml", action="store_true", help="Log to ClearML")
    parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub")
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        action="store_true",
        help="Load pretrained parameters before starting the training",
    )
    parser.add_argument("--rotation", dest="rotation", action="store_true", help="train with rotated documents")
    parser.add_argument(
        "--eval-straight",
        action="store_true",
        help="metrics evaluation with straight boxes instead of polygons to save time + memory",
    )
    parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
    parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR")
    parser.add_argument("--early-stop", action="store_true", help="Enable early stopping")
    parser.add_argument("--early-stop-epochs", type=int, default=5, help="Patience for early stopping")
    parser.add_argument("--early-stop-delta", type=float, default=0.01, help="Minimum Delta for early stopping")
    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)