--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - razhan/DOLMA-speech metrics: - bleu model-index: - name: whisper-base-hawrami results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: razhan/DOLMA-speech hawrami type: razhan/DOLMA-speech args: hawrami metrics: - name: Bleu type: bleu value: 0.403603847823992 --- # whisper-base-hawrami This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the razhan/DOLMA-speech hawrami dataset. It achieves the following results on the evaluation set: - Loss: 3.0851 - Chrf: 13.3279 - Bleu: 0.4036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Chrf | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:| | 4.056 | 1.0 | 40 | 3.7037 | 12.1151 | 0.0829 | | 3.4175 | 2.0 | 80 | 3.2226 | 11.2675 | 0.1153 | | 3.1704 | 3.0 | 120 | 3.1141 | 12.9709 | 0.2803 | | 3.0286 | 4.0 | 160 | 3.0851 | 13.3279 | 0.4036 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0