File size: 2,398 Bytes
8bb5da6 6af401e 8bb5da6 6af401e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: xlnet-base-cased-HU-comple
results: []
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlnet-base-cased-HU-comple
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9240
- Accuracy: 0.8050
- F1: 0.7619
- Precision: 0.7568
- Recall: 0.7671
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6952 | 1.0 | 90 | 0.6760 | 0.5933 | 0.0 | 0.0 | 0.0 |
| 0.694 | 2.0 | 180 | 0.6782 | 0.5933 | 0.0 | 0.0 | 0.0 |
| 0.6856 | 3.0 | 270 | 0.6781 | 0.5933 | 0.0 | 0.0 | 0.0 |
| 0.6868 | 4.0 | 360 | 0.7132 | 0.5933 | 0.0 | 0.0 | 0.0 |
| 0.6353 | 5.0 | 450 | 0.6486 | 0.6657 | 0.6685 | 0.5602 | 0.8288 |
| 0.5003 | 6.0 | 540 | 0.5151 | 0.7799 | 0.7189 | 0.7481 | 0.6918 |
| 0.3585 | 7.0 | 630 | 0.5237 | 0.7660 | 0.7290 | 0.6890 | 0.7740 |
| 0.2167 | 8.0 | 720 | 0.7817 | 0.7883 | 0.7226 | 0.7734 | 0.6781 |
| 0.1643 | 9.0 | 810 | 0.8763 | 0.7939 | 0.7597 | 0.7222 | 0.8014 |
| 0.135 | 10.0 | 900 | 0.9240 | 0.8050 | 0.7619 | 0.7568 | 0.7671 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1 |