--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.86443345323741 - name: Recall type: recall value: 0.8835018382352942 - name: F1 type: f1 value: 0.8738636363636364 - name: Accuracy type: accuracy value: 0.9787686065955755 --- # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - Precision: 0.8644 - Recall: 0.8835 - F1: 0.8739 - Accuracy: 0.9788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1382 | 1.0 | 521 | 0.0906 | 0.8502 | 0.8830 | 0.8663 | 0.9782 | | 0.048 | 2.0 | 1042 | 0.0861 | 0.8472 | 0.8729 | 0.8599 | 0.9780 | | 0.0294 | 3.0 | 1563 | 0.0973 | 0.8644 | 0.8835 | 0.8739 | 0.9788 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3