raulgdp commited on
Commit
c5ab6de
·
verified ·
1 Parent(s): 8facb22

End of training

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: mit
4
+ base_model: FacebookAI/xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - conll2002
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: roberta-large-ner-qlorafinetune-runs
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # roberta-large-ner-qlorafinetune-runs
23
+
24
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the conll2002 dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.0694
27
+ - Precision: 0.8625
28
+ - Recall: 0.875
29
+ - F1: 0.8687
30
+ - Accuracy: 0.9804
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 0.0004
50
+ - train_batch_size: 32
51
+ - eval_batch_size: 32
52
+ - seed: 42
53
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - training_steps: 640
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | 1.1936 | 0.0766 | 20 | 0.4315 | 0.1319 | 0.1585 | 0.1440 | 0.8748 |
63
+ | 0.2712 | 0.1533 | 40 | 0.2038 | 0.5456 | 0.6085 | 0.5753 | 0.9453 |
64
+ | 0.139 | 0.2299 | 60 | 0.1220 | 0.7536 | 0.7799 | 0.7665 | 0.9668 |
65
+ | 0.0901 | 0.3065 | 80 | 0.1529 | 0.7119 | 0.7624 | 0.7363 | 0.9631 |
66
+ | 0.1016 | 0.3831 | 100 | 0.0917 | 0.8151 | 0.8212 | 0.8181 | 0.9752 |
67
+ | 0.0916 | 0.4598 | 120 | 0.0929 | 0.7840 | 0.7966 | 0.7903 | 0.9722 |
68
+ | 0.0784 | 0.5364 | 140 | 0.0795 | 0.8414 | 0.8532 | 0.8472 | 0.9785 |
69
+ | 0.0791 | 0.6130 | 160 | 0.0813 | 0.8449 | 0.8534 | 0.8491 | 0.9785 |
70
+ | 0.0664 | 0.6897 | 180 | 0.0824 | 0.8462 | 0.8460 | 0.8461 | 0.9783 |
71
+ | 0.0683 | 0.7663 | 200 | 0.0734 | 0.8530 | 0.8575 | 0.8553 | 0.9789 |
72
+ | 0.061 | 0.8429 | 220 | 0.0718 | 0.8519 | 0.8656 | 0.8587 | 0.9793 |
73
+ | 0.0516 | 0.9195 | 240 | 0.0766 | 0.8449 | 0.8539 | 0.8494 | 0.9772 |
74
+ | 0.0526 | 0.9962 | 260 | 0.0723 | 0.8420 | 0.8631 | 0.8524 | 0.9788 |
75
+ | 0.0408 | 1.0728 | 280 | 0.0672 | 0.8528 | 0.8693 | 0.8609 | 0.9798 |
76
+ | 0.0457 | 1.1494 | 300 | 0.0751 | 0.8689 | 0.8745 | 0.8717 | 0.9799 |
77
+ | 0.054 | 1.2261 | 320 | 0.0768 | 0.8495 | 0.8626 | 0.8560 | 0.9776 |
78
+ | 0.05 | 1.3027 | 340 | 0.0761 | 0.8431 | 0.8631 | 0.8530 | 0.9776 |
79
+ | 0.0465 | 1.3793 | 360 | 0.0747 | 0.8395 | 0.8497 | 0.8446 | 0.9781 |
80
+ | 0.0465 | 1.4559 | 380 | 0.0796 | 0.8348 | 0.8490 | 0.8419 | 0.9771 |
81
+ | 0.0388 | 1.5326 | 400 | 0.0690 | 0.8584 | 0.8787 | 0.8684 | 0.9804 |
82
+ | 0.0398 | 1.6092 | 420 | 0.0688 | 0.8569 | 0.8699 | 0.8634 | 0.9805 |
83
+ | 0.0523 | 1.6858 | 440 | 0.0682 | 0.8479 | 0.8605 | 0.8541 | 0.9784 |
84
+ | 0.042 | 1.7625 | 460 | 0.0634 | 0.8740 | 0.8881 | 0.8810 | 0.9828 |
85
+ | 0.0395 | 1.8391 | 480 | 0.0660 | 0.8638 | 0.8784 | 0.8710 | 0.9809 |
86
+ | 0.0432 | 1.9157 | 500 | 0.0641 | 0.8678 | 0.8780 | 0.8729 | 0.9806 |
87
+ | 0.0357 | 1.9923 | 520 | 0.0667 | 0.8706 | 0.8748 | 0.8727 | 0.9808 |
88
+ | 0.0417 | 2.0690 | 540 | 0.0725 | 0.8513 | 0.8725 | 0.8618 | 0.9800 |
89
+ | 0.0269 | 2.1456 | 560 | 0.0705 | 0.8599 | 0.8699 | 0.8649 | 0.9802 |
90
+ | 0.0259 | 2.2222 | 580 | 0.0695 | 0.8614 | 0.8739 | 0.8676 | 0.9810 |
91
+ | 0.0355 | 2.2989 | 600 | 0.0706 | 0.8611 | 0.8732 | 0.8671 | 0.9803 |
92
+ | 0.0299 | 2.3755 | 620 | 0.0702 | 0.8585 | 0.8741 | 0.8662 | 0.9801 |
93
+ | 0.0303 | 2.4521 | 640 | 0.0694 | 0.8625 | 0.875 | 0.8687 | 0.9804 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - PEFT 0.13.2
99
+ - Transformers 4.46.3
100
+ - Pytorch 2.5.1
101
+ - Datasets 3.1.0
102
+ - Tokenizers 0.20.3