File size: 2,606 Bytes
5f27048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-spanish-wwm-cased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9477110233699712
- name: Recall
type: recall
value: 0.9651162790697675
- name: F1
type: f1
value: 0.9563344640068918
- name: Accuracy
type: accuracy
value: 0.9767557932263815
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-spanish-wwm-cased-finetuned-ner
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1126
- Precision: 0.9477
- Recall: 0.9651
- F1: 0.9563
- Accuracy: 0.9768
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1463 | 1.0 | 1224 | 0.1119 | 0.9393 | 0.9569 | 0.9480 | 0.9726 |
| 0.0951 | 2.0 | 2448 | 0.1077 | 0.9331 | 0.9692 | 0.9508 | 0.9748 |
| 0.0635 | 3.0 | 3672 | 0.1061 | 0.9445 | 0.9696 | 0.9569 | 0.9770 |
| 0.043 | 4.0 | 4896 | 0.1072 | 0.9485 | 0.9676 | 0.9579 | 0.9772 |
| 0.0324 | 5.0 | 6120 | 0.1126 | 0.9477 | 0.9651 | 0.9563 | 0.9768 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|