--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.941812865497076 - name: Recall type: recall value: 0.966852487135506 - name: F1 type: f1 value: 0.9541684299619129 - name: Accuracy type: accuracy value: 0.9754933560689555 --- # bert-base-cased-finetuned-ner This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1119 - Precision: 0.9418 - Recall: 0.9669 - F1: 0.9542 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1824 | 1.0 | 1224 | 0.1170 | 0.9227 | 0.9563 | 0.9392 | 0.9686 | | 0.1162 | 2.0 | 2448 | 0.1138 | 0.9277 | 0.9654 | 0.9462 | 0.9717 | | 0.0756 | 3.0 | 3672 | 0.1025 | 0.9398 | 0.9685 | 0.9540 | 0.9751 | | 0.051 | 4.0 | 4896 | 0.1076 | 0.9425 | 0.9691 | 0.9556 | 0.9759 | | 0.0423 | 5.0 | 6120 | 0.1119 | 0.9418 | 0.9669 | 0.9542 | 0.9755 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3