--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8416742493175614 - name: Recall type: recall value: 0.8501838235294118 - name: F1 type: f1 value: 0.8459076360310929 - name: Accuracy type: accuracy value: 0.967827919662782 --- # NER-finetuning-BETO This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2653 - Precision: 0.8417 - Recall: 0.8502 - F1: 0.8459 - Accuracy: 0.9678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0507 | 1.0 | 1041 | 0.1448 | 0.8298 | 0.8571 | 0.8432 | 0.9691 | | 0.0333 | 2.0 | 2082 | 0.1728 | 0.8259 | 0.8481 | 0.8369 | 0.9678 | | 0.0195 | 3.0 | 3123 | 0.1722 | 0.8392 | 0.8516 | 0.8453 | 0.9693 | | 0.0147 | 4.0 | 4164 | 0.2037 | 0.8502 | 0.8488 | 0.8495 | 0.9679 | | 0.011 | 5.0 | 5205 | 0.2041 | 0.8394 | 0.8529 | 0.8461 | 0.9695 | | 0.0082 | 6.0 | 6246 | 0.2418 | 0.8410 | 0.8401 | 0.8406 | 0.9664 | | 0.006 | 7.0 | 7287 | 0.2323 | 0.8448 | 0.8552 | 0.8500 | 0.9678 | | 0.0046 | 8.0 | 8328 | 0.2415 | 0.8411 | 0.8527 | 0.8469 | 0.9691 | | 0.003 | 9.0 | 9369 | 0.2502 | 0.8402 | 0.8495 | 0.8448 | 0.9677 | | 0.0022 | 10.0 | 10410 | 0.2653 | 0.8417 | 0.8502 | 0.8459 | 0.9678 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1