End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the conll2002 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.7331490537954497
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.7922794117647058
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.7615681943677526
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9655162373585419
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the conll2002 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1391
|
49 |
+
- Precision: 0.7331
|
50 |
+
- Recall: 0.7923
|
51 |
+
- F1: 0.7616
|
52 |
+
- Accuracy: 0.9655
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.1028 | 1.0 | 1041 | 0.1424 | 0.7051 | 0.7603 | 0.7317 | 0.9618 |
|
84 |
+
| 0.0678 | 2.0 | 2082 | 0.1391 | 0.7331 | 0.7923 | 0.7616 | 0.9655 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
runs/Nov16_01-49-22_9d65af7b14f6/events.out.tfevents.1731721770.9d65af7b14f6.202.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be924e367d11b9e307234a6b6d38a3aacf3c812aeb67168044b0397a3e708704
|
3 |
+
size 7563
|