raulgdp commited on
Commit
e23877a
·
verified ·
1 Parent(s): b76a38d

End of training

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.7202368365404949
30
  - name: Recall
31
  type: recall
32
- value: 0.7826286764705882
33
  - name: F1
34
  type: f1
35
- value: 0.750137650038542
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9648077333695674
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the conll2002 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.1386
49
- - Precision: 0.7202
50
- - Recall: 0.7826
51
- - F1: 0.7501
52
- - Accuracy: 0.9648
53
 
54
  ## Model description
55
 
@@ -80,8 +80,8 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.102 | 1.0 | 1041 | 0.1425 | 0.7041 | 0.7551 | 0.7287 | 0.9610 |
84
- | 0.0665 | 2.0 | 2082 | 0.1386 | 0.7202 | 0.7826 | 0.7501 | 0.9648 |
85
 
86
 
87
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.7331490537954497
30
  - name: Recall
31
  type: recall
32
+ value: 0.7922794117647058
33
  - name: F1
34
  type: f1
35
+ value: 0.7615681943677526
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9655162373585419
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the conll2002 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.1391
49
+ - Precision: 0.7331
50
+ - Recall: 0.7923
51
+ - F1: 0.7616
52
+ - Accuracy: 0.9655
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.1028 | 1.0 | 1041 | 0.1424 | 0.7051 | 0.7603 | 0.7317 | 0.9618 |
84
+ | 0.0678 | 2.0 | 2082 | 0.1391 | 0.7331 | 0.7923 | 0.7616 | 0.9655 |
85
 
86
 
87
  ### Framework versions
runs/Nov16_01-49-22_9d65af7b14f6/events.out.tfevents.1731721770.9d65af7b14f6.202.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c4557b30a710b20935516fbe9894adc397f27cd7ecac9732659d69fa8995a35
3
- size 6737
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be924e367d11b9e307234a6b6d38a3aacf3c812aeb67168044b0397a3e708704
3
+ size 7563