--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NER-fine-tuned-BETO-finetuned-ner results: [] --- # NER-fine-tuned-BETO-finetuned-ner This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2509 - Precision: 0.7185 - Recall: 0.6715 - F1: 0.6942 - Accuracy: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8944 | 1.0 | 777 | 0.3823 | 0.6589 | 0.5547 | 0.6023 | 0.8467 | | 0.4465 | 2.0 | 1554 | 0.2852 | 0.6810 | 0.6399 | 0.6598 | 0.8775 | | 0.3745 | 3.0 | 2331 | 0.2509 | 0.7185 | 0.6715 | 0.6942 | 0.8935 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1