raulgdp commited on
Commit
eb319f3
·
verified ·
1 Parent(s): b48e467

End of training

Browse files
Files changed (6) hide show
  1. README.md +69 -91
  2. config.json +76 -91
  3. model.safetensors +2 -2
  4. special_tokens_map.json +37 -37
  5. tokenizer_config.json +60 -58
  6. training_args.bin +1 -1
README.md CHANGED
@@ -1,91 +1,69 @@
1
- ---
2
- library_name: transformers
3
- license: cc-by-4.0
4
- base_model: NazaGara/NER-fine-tuned-BETO
5
- tags:
6
- - generated_from_trainer
7
- datasets:
8
- - biobert_json
9
- metrics:
10
- - precision
11
- - recall
12
- - f1
13
- - accuracy
14
- model-index:
15
- - name: NER-fine-tuned-BETO-finetuned-ner
16
- results:
17
- - task:
18
- name: Token Classification
19
- type: token-classification
20
- dataset:
21
- name: biobert_json
22
- type: biobert_json
23
- config: Biobert_json
24
- split: validation
25
- args: Biobert_json
26
- metrics:
27
- - name: Precision
28
- type: precision
29
- value: 0.9260690093141406
30
- - name: Recall
31
- type: recall
32
- value: 0.9508259074114322
33
- - name: F1
34
- type: f1
35
- value: 0.93828418230563
36
- - name: Accuracy
37
- type: accuracy
38
- value: 0.9680427807486631
39
- ---
40
-
41
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
- should probably proofread and complete it, then remove this comment. -->
43
-
44
- # NER-fine-tuned-BETO-finetuned-ner
45
-
46
- This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset.
47
- It achieves the following results on the evaluation set:
48
- - Loss: 0.1199
49
- - Precision: 0.9261
50
- - Recall: 0.9508
51
- - F1: 0.9383
52
- - Accuracy: 0.9680
53
-
54
- ## Model description
55
-
56
- More information needed
57
-
58
- ## Intended uses & limitations
59
-
60
- More information needed
61
-
62
- ## Training and evaluation data
63
-
64
- More information needed
65
-
66
- ## Training procedure
67
-
68
- ### Training hyperparameters
69
-
70
- The following hyperparameters were used during training:
71
- - learning_rate: 2e-05
72
- - train_batch_size: 16
73
- - eval_batch_size: 16
74
- - seed: 42
75
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
- - lr_scheduler_type: linear
77
- - num_epochs: 1
78
-
79
- ### Training results
80
-
81
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.3593 | 1.0 | 612 | 0.1199 | 0.9261 | 0.9508 | 0.9383 | 0.9680 |
84
-
85
-
86
- ### Framework versions
87
-
88
- - Transformers 4.46.2
89
- - Pytorch 2.5.1
90
- - Datasets 3.1.0
91
- - Tokenizers 0.20.3
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-4.0
4
+ base_model: NazaGara/NER-fine-tuned-BETO
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: NER-fine-tuned-BETO-finetuned-ner
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # NER-fine-tuned-BETO-finetuned-ner
21
+
22
+ This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2509
25
+ - Precision: 0.7185
26
+ - Recall: 0.6715
27
+ - F1: 0.6942
28
+ - Accuracy: 0.8935
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 4
49
+ - eval_batch_size: 4
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.8944 | 1.0 | 777 | 0.3823 | 0.6589 | 0.5547 | 0.6023 | 0.8467 |
60
+ | 0.4465 | 2.0 | 1554 | 0.2852 | 0.6810 | 0.6399 | 0.6598 | 0.8775 |
61
+ | 0.3745 | 3.0 | 2331 | 0.2509 | 0.7185 | 0.6715 | 0.6942 | 0.8935 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.52.2
67
+ - Pytorch 2.6.0+cu124
68
+ - Datasets 2.14.4
69
+ - Tokenizers 0.21.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,91 +1,76 @@
1
- {
2
- "_name_or_path": "NazaGara/NER-fine-tuned-BETO",
3
- "architectures": [
4
- "BertForTokenClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
- "id2label": {
13
- "0": "B_CANCER_CONCEPT",
14
- "1": "B_CHEMOTHERAPY",
15
- "2": "B_DATE",
16
- "3": "B_DRUG",
17
- "4": "B_FAMILY",
18
- "5": "B_FREQ",
19
- "6": "B_IMPLICIT_DATE",
20
- "7": "B_INTERVAL",
21
- "8": "B_METRIC",
22
- "9": "B_OCURRENCE_EVENT",
23
- "10": "B_QUANTITY",
24
- "11": "B_RADIOTHERAPY",
25
- "12": "B_SMOKER_STATUS",
26
- "13": "B_STAGE",
27
- "14": "B_SURGERY",
28
- "15": "B_TNM",
29
- "16": "I_CANCER_CONCEPT",
30
- "17": "I_DATE",
31
- "18": "I_DRUG",
32
- "19": "I_FAMILY",
33
- "20": "I_FREQ",
34
- "21": "I_IMPLICIT_DATE",
35
- "22": "I_INTERVAL",
36
- "23": "I_METRIC",
37
- "24": "I_OCURRENCE_EVENT",
38
- "25": "I_SMOKER_STATUS",
39
- "26": "I_STAGE",
40
- "27": "I_SURGERY",
41
- "28": "I_TNM",
42
- "29": "O"
43
- },
44
- "initializer_range": 0.02,
45
- "intermediate_size": 3072,
46
- "label2id": {
47
- "B_CANCER_CONCEPT": 0,
48
- "B_CHEMOTHERAPY": 1,
49
- "B_DATE": 2,
50
- "B_DRUG": 3,
51
- "B_FAMILY": 4,
52
- "B_FREQ": 5,
53
- "B_IMPLICIT_DATE": 6,
54
- "B_INTERVAL": 7,
55
- "B_METRIC": 8,
56
- "B_OCURRENCE_EVENT": 9,
57
- "B_QUANTITY": 10,
58
- "B_RADIOTHERAPY": 11,
59
- "B_SMOKER_STATUS": 12,
60
- "B_STAGE": 13,
61
- "B_SURGERY": 14,
62
- "B_TNM": 15,
63
- "I_CANCER_CONCEPT": 16,
64
- "I_DATE": 17,
65
- "I_DRUG": 18,
66
- "I_FAMILY": 19,
67
- "I_FREQ": 20,
68
- "I_IMPLICIT_DATE": 21,
69
- "I_INTERVAL": 22,
70
- "I_METRIC": 23,
71
- "I_OCURRENCE_EVENT": 24,
72
- "I_SMOKER_STATUS": 25,
73
- "I_STAGE": 26,
74
- "I_SURGERY": 27,
75
- "I_TNM": 28,
76
- "O": 29
77
- },
78
- "layer_norm_eps": 1e-12,
79
- "max_position_embeddings": 512,
80
- "model_type": "bert",
81
- "num_attention_heads": 12,
82
- "num_hidden_layers": 12,
83
- "output_past": true,
84
- "pad_token_id": 1,
85
- "position_embedding_type": "absolute",
86
- "torch_dtype": "float32",
87
- "transformers_version": "4.46.2",
88
- "type_vocab_size": 2,
89
- "use_cache": true,
90
- "vocab_size": 31002
91
- }
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": ",",
13
+ "1": "0",
14
+ "2": "B-BIOMARCADOR",
15
+ "3": "B-CANCER",
16
+ "4": "B-CIRUGIA",
17
+ "5": "B-DOSIS",
18
+ "6": "B-EDAD",
19
+ "7": "B-FECHA",
20
+ "8": "B-GLEASON",
21
+ "9": "B-MEDICAMENTO",
22
+ "10": "B-TNM",
23
+ "11": "B-TRATAMIENTO",
24
+ "12": "I-BIOMARCADOR",
25
+ "13": "I-CANCER",
26
+ "14": "I-CIRUGIA",
27
+ "15": "I-DOSIS",
28
+ "16": "I-EDAD",
29
+ "17": "I-FECHA",
30
+ "18": "I-GLEASON",
31
+ "19": "I-MEDICAMENTO",
32
+ "20": "I-TNM",
33
+ "21": "I-TRATAMIENTO",
34
+ "22": "O"
35
+ },
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": 3072,
38
+ "label2id": {
39
+ ",": 0,
40
+ "0": 1,
41
+ "B-BIOMARCADOR": 2,
42
+ "B-CANCER": 3,
43
+ "B-CIRUGIA": 4,
44
+ "B-DOSIS": 5,
45
+ "B-EDAD": 6,
46
+ "B-FECHA": 7,
47
+ "B-GLEASON": 8,
48
+ "B-MEDICAMENTO": 9,
49
+ "B-TNM": 10,
50
+ "B-TRATAMIENTO": 11,
51
+ "I-BIOMARCADOR": 12,
52
+ "I-CANCER": 13,
53
+ "I-CIRUGIA": 14,
54
+ "I-DOSIS": 15,
55
+ "I-EDAD": 16,
56
+ "I-FECHA": 17,
57
+ "I-GLEASON": 18,
58
+ "I-MEDICAMENTO": 19,
59
+ "I-TNM": 20,
60
+ "I-TRATAMIENTO": 21,
61
+ "O": 22
62
+ },
63
+ "layer_norm_eps": 1e-12,
64
+ "max_position_embeddings": 512,
65
+ "model_type": "bert",
66
+ "num_attention_heads": 12,
67
+ "num_hidden_layers": 12,
68
+ "output_past": true,
69
+ "pad_token_id": 1,
70
+ "position_embedding_type": "absolute",
71
+ "torch_dtype": "float32",
72
+ "transformers_version": "4.52.2",
73
+ "type_vocab_size": 2,
74
+ "use_cache": true,
75
+ "vocab_size": 31002
76
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:490ecd05689a719ac555110e493f0fbefb760669bab36c4ea462c0cecc70ba82
3
- size 437156776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dfa6e09e4bc822d11aaab8b2d5cbdad238a4a894564446e72d9b3b0175e613b
3
+ size 437135244
special_tokens_map.json CHANGED
@@ -1,37 +1,37 @@
1
- {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
- }
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json CHANGED
@@ -1,58 +1,60 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[MASK]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "[PAD]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "3": {
20
- "content": "[UNK]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "4": {
28
- "content": "[CLS]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "5": {
36
- "content": "[SEP]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": false,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": false,
48
- "mask_token": "[MASK]",
49
- "model_max_length": 512,
50
- "never_split": null,
51
- "num_labels": 9,
52
- "pad_token": "[PAD]",
53
- "sep_token": "[SEP]",
54
- "strip_accents": false,
55
- "tokenize_chinese_chars": true,
56
- "tokenizer_class": "BertTokenizer",
57
- "unk_token": "[UNK]"
58
- }
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[MASK]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[PAD]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "3": {
21
+ "content": "[UNK]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "4": {
29
+ "content": "[CLS]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "5": {
37
+ "content": "[SEP]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "extra_special_tokens": {},
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "num_labels": 9,
54
+ "pad_token": "[PAD]",
55
+ "sep_token": "[SEP]",
56
+ "strip_accents": false,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33c0ec32171b1b99c608110e45aa47131bf748b55b5fb7aefd70bedf210968c0
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62b565154933b9674fcdca1c3dc26457dfe761d3bc8885a9618dd76c970dcf5f
3
  size 5304