--- license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO results: [] --- # NER-finetuning-BETO Este es el modelo de BETO para NER [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Precision: 0.8424 - Recall: 0.8545 - F1: 0.8484 - Accuracy: 0.9691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0482 | 1.0 | 1041 | 0.1522 | 0.8309 | 0.8481 | 0.8394 | 0.9687 | | 0.0302 | 2.0 | 2082 | 0.1661 | 0.8293 | 0.8527 | 0.8408 | 0.9696 | | 0.0164 | 3.0 | 3123 | 0.1691 | 0.8403 | 0.8536 | 0.8469 | 0.9696 | | 0.011 | 4.0 | 4164 | 0.2026 | 0.8427 | 0.8516 | 0.8471 | 0.9693 | | 0.0073 | 5.0 | 5205 | 0.2140 | 0.8424 | 0.8545 | 0.8484 | 0.9691 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1