--- library_name: peft license: other base_model: mistralai/Ministral-8B-Instruct-2410 tags: - generated_from_trainer model-index: - name: Mistral-8B-Instruct-2410-009 results: [] datasets: - jdavit/colombian-conflict-SQA --- # Mistral-8B-Instruct-2410-009 Este modelo es un afnamiento del modelo [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) sobre un dataset del acuerdo 009 de la univalle con 8 mil millones de parámetros a 10 épocas, con un batch_size de 1 y ocupando por completo toda la memoria VRAM de la GPU de 24 Gz, logrando una función de pérdida de: - Loss: 0.3784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4242 | 0.2694 | 100 | 1.3903 | | 1.2006 | 0.5387 | 200 | 1.2413 | | 1.1104 | 0.8081 | 300 | 1.1213 | | 0.9163 | 1.0754 | 400 | 1.0207 | | 0.8715 | 1.3448 | 500 | 0.9261 | | 0.7834 | 1.6141 | 600 | 0.8410 | | 0.8636 | 1.8835 | 700 | 0.7739 | | 0.7017 | 2.1508 | 800 | 0.7145 | | 0.6127 | 2.4202 | 900 | 0.6664 | | 0.6409 | 2.6896 | 1000 | 0.6310 | | 0.584 | 2.9589 | 1100 | 0.5932 | | 0.5592 | 3.2263 | 1200 | 0.5683 | | 0.4336 | 3.4956 | 1300 | 0.5447 | | 0.5287 | 3.7650 | 1400 | 0.5292 | | 0.4449 | 4.0323 | 1500 | 0.5119 | | 0.4894 | 4.3017 | 1600 | 0.4994 | | 0.436 | 4.5710 | 1700 | 0.4799 | | 0.3756 | 4.8404 | 1800 | 0.4676 | | 0.3174 | 5.1077 | 1900 | 0.4545 | | 0.3721 | 5.3771 | 2000 | 0.4475 | | 0.3813 | 5.6465 | 2100 | 0.4367 | | 0.3972 | 5.9158 | 2200 | 0.4281 | | 0.354 | 6.1832 | 2300 | 0.4244 | | 0.3299 | 6.4525 | 2400 | 0.4206 | | 0.4017 | 6.7219 | 2500 | 0.4112 | | 0.3103 | 6.9912 | 2600 | 0.4060 | | 0.3299 | 7.2586 | 2700 | 0.4060 | | 0.3874 | 7.5279 | 2800 | 0.3989 | | 0.3838 | 7.7973 | 2900 | 0.3940 | | 0.3446 | 8.0646 | 3000 | 0.3907 | | 0.2674 | 8.3340 | 3100 | 0.3887 | | 0.2681 | 8.6034 | 3200 | 0.3839 | | 0.2922 | 8.8727 | 3300 | 0.3806 | | 0.3125 | 9.1401 | 3400 | 0.3820 | | 0.3042 | 9.4094 | 3500 | 0.3802 | | 0.2623 | 9.6788 | 3600 | 0.3790 | | 0.3382 | 9.9481 | 3700 | 0.3784 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1