--- library_name: transformers datasets: - oscar - mc4 - rasyosef/amharic-sentences-corpus language: - am metrics: - perplexity pipeline_tag: fill-mask widget: - text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ተቆጥሯል። example_title: Example 1 - text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር ግዢ በእጅጉ ጨምሯል። example_title: Example 2 - text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው። example_title: Example 3 - text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው። example_title: Example 4 --- # roberta-medium-amharic This model has the same architecture as [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of **290 Million tokens**. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 32k. The model was trained for **15 hours** on an **A100 40GB GPU**. It achieves the following results on the evaluation set: - `Loss: 2.446` - `Perplexity: 11.59` Even though this model has **42 Million parameters** it beats the 7x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) multilingual model on Amharic Sentiment Classification and Named Entity Recognition tasks. # How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='rasyosef/roberta-medium-amharic') >>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ተቆጥሯል።") [{'score': 0.7755730152130127, 'token': 137, 'token_str': 'ዓመት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል።'}, {'score': 0.09340856224298477, 'token': 346, 'token_str': 'አመት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል።'}, {'score': 0.08586721867322922, 'token': 217, 'token_str': 'ዓመታት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል።'}, {'score': 0.011987944133579731, 'token': 733, 'token_str': 'አመታት', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል።'}, {'score': 0.010042797774076462, 'token': 1392, 'token_str': 'ዓመቱ', 'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመቱ ተቆጥሯል።'}] ``` # Finetuning This model was finetuned and evaluated on the following Amharic NLP tasks - **Sentiment Classification** - Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment) - Code: https://github.com/rasyosef/amharic-sentiment-classification - **Named Entity Recognition** - Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition) - Code: https://github.com/rasyosef/amharic-named-entity-recognition ### Finetuned Model Performance The reported F1 scores are macro averages. |Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)| |-----|---------------|-----------|--------------|------------------------------| |roberta-base-amharic|110M|8.08|0.88|0.78| |**roberta-medium-amharic**|**42.2M**|**11.59**|**0.84**|**0.75**| |bert-medium-amharic|40.5M|13.74|0.83|0.68| |bert-small-amharic|27.8M|15.96|0.83|0.68| |bert-mini-amharic|10.7M|22.42|0.81|0.64| |bert-tiny-amharic|4.18M|71.52|0.79|0.54| |xlm-roberta-base|279M||0.83|0.73| |afro-xlmr-base|278M||0.83|0.75| |afro-xlmr-large|560M||0.86|0.76| |am-roberta|443M||0.82|0.69|