--- license: mit metrics: - accuracy library_name: sklearn pipeline_tag: tabular-regression tags: - medical --- # Logistic Regression Diabetes Prediction Model ## Instructions for Users ### DiabeticLogistic Model This model predicts the likelihood of diabetes based on medical data using logistic regression. ### Dataset The model is trained on a dataset with features including: - Glucose - BloodPressure - SkinThickness - Insulin - BMI - DiabetesPedigreeFunction - Age ### Preprocessing Features are normalized using `StandardScaler`. ### Usage #### Downloading the Model ```python !pip install pandas scikit-learn joblib huggingface_hub from huggingface_hub import hf_hub_download import joblib import pandas as pd # Your Hugging Face token token = "put your token here" # Download the model and scaler from the Hugging Face Hub using the token model_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="logistic_regression_model.joblib", use_auth_token=token) scaler_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="scaler.joblib", use_auth_token=token) # Load the model and scaler model = joblib.load(model_path) scaler = joblib.load(scaler_path) # Example data data = pd.DataFrame({ 'Pregnancies': [6, 1], 'Glucose': [148, 85], 'BloodPressure': [72, 66], 'SkinThickness': [35, 29], 'Insulin': [0, 0], 'BMI': [33.6, 26.6], 'DiabetesPedigreeFunction': [0.627, 0.351], 'Age': [50, 31] }) # Normalize the data data_scaled = scaler.transform(data) # Make predictions predictions = model.predict(data_scaled) print("Predictions:", predictions) ``` #### Fine-Tuning the Model To fine-tune the model, follow these steps: ##### Load the Model and Data ```python from huggingface_hub import hf_hub_download import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import joblib # Your Hugging Face token token = "put your token here" # Download the model and scaler from the Hugging Face Hub using the token model_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="logistic_regression_model.joblib", use_auth_token=token) scaler_path = hf_hub_download(repo_id="rama0519/DiabeticLogistic123", filename="scaler.joblib", use_auth_token=token) # Load the model and scaler model = joblib.load(model_path) scaler = joblib.load(scaler_path) # Load your dataset data = pd.read_csv('/content/Healthcare-Diabetes.csv') # Drop the 'Id' column if it exists if 'Id' in data.columns: data = data.drop(columns=['Id']) X = data.drop(columns=['Outcome']) y = data['Outcome'] # Normalize the features X_scaled = scaler.transform(X) # Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) ``` ##### Fine-Tune the Model ```python # Fine-tune the model model.fit(X_train, y_train) # Evaluate the fine-tuned model y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f'Fine-tuned Accuracy: {accuracy:.2f}') ``` ##### Save the Fine-Tuned Model ```python joblib.dump(model, 'fine_tuned_logistic_regression_model.joblib') ```