Update README.md
Browse files
README.md
CHANGED
|
@@ -22,12 +22,36 @@ emotions = ['angry' 'disgust' 'fear' 'happy' 'neutral' 'sad' 'surprise']
|
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
- Loss: 0.104075
|
| 24 |
- Accuracy: 0.97463
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
## Training procedure
|
| 32 |
### Training hyperparameters
|
| 33 |
The following hyperparameters were used during training:
|
|
|
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
- Loss: 0.104075
|
| 24 |
- Accuracy: 0.97463
|
| 25 |
+
|
| 26 |
+
## Model Usage
|
| 27 |
+
```bash
|
| 28 |
+
pip install transformers librosa torch
|
| 29 |
+
```
|
| 30 |
+
```python
|
| 31 |
+
from transformers import *
|
| 32 |
+
import librosa
|
| 33 |
+
import torch
|
| 34 |
+
|
| 35 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("r-f/wav2vec-english-speech-emotion-recognition")
|
| 36 |
+
model = Wav2Vec2ForCTC.from_pretrained("r-f/wav2vec-english-speech-emotion-recognition")
|
| 37 |
+
|
| 38 |
+
def predict_emotion(audio_path):
|
| 39 |
+
audio, rate = librosa.load(audio_path, sr=16000)
|
| 40 |
+
inputs = feature_extractor(audio, sampling_rate=rate, return_tensors="pt", padding=True)
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model(inputs.input_values)
|
| 44 |
+
predictions = torch.nn.functional.softmax(outputs.logits.mean(dim=1), dim=-1) # Average over sequence length
|
| 45 |
+
predicted_label = torch.argmax(predictions, dim=-1)
|
| 46 |
+
emotion = model.config.id2label[predicted_label.item()]
|
| 47 |
+
return emotion
|
| 48 |
+
|
| 49 |
+
emotion = predict_emotion("example_audio.wav")
|
| 50 |
+
print(f"Predicted emotion: {emotion}")
|
| 51 |
+
>> Predicted emotion: angry
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
|
| 55 |
## Training procedure
|
| 56 |
### Training hyperparameters
|
| 57 |
The following hyperparameters were used during training:
|