Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: deepseek-license
|
4 |
+
license_link: LICENSE
|
5 |
+
base_model: deepseek-ai/DeepSeek-Coder-V2-Instruct
|
6 |
+
---
|
7 |
+
|
8 |
+
# Quant Infos
|
9 |
+
|
10 |
+
- quants done with an importance matrix for improved quantization loss
|
11 |
+
- ggufs & imatrix generated from bf16 for "optimal" accuracy loss
|
12 |
+
- Wide coverage of different gguf quant types from Q\_8\_0 down to IQ1\_S
|
13 |
+
- Quantized with [llama.cpp](https://github.com/ggerganov/llama.cpp) commit [d62e4aaa02540c89be8b59426340b909d02bbc9e](https://github.com/ggerganov/llama.cpp/commit/d62e4aaa02540c89be8b59426340b909d02bbc9e) (master as of 2024-06-24)
|
14 |
+
- Imatrix generated with [this](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) multi-purpose dataset by [bartowski](https://huggingface.co/bartowski).
|
15 |
+
```
|
16 |
+
./imatrix -c 512 -m $model_name-bf16.gguf -f calibration_datav3.txt -o $model_name.imatrix
|
17 |
+
```
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# Original Model Card:
|
22 |
+
|
23 |
+
<!-- markdownlint-disable first-line-h1 -->
|
24 |
+
<!-- markdownlint-disable html -->
|
25 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
26 |
+
|
27 |
+
<div align="center">
|
28 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
|
29 |
+
</div>
|
30 |
+
<hr>
|
31 |
+
<div align="center" style="line-height: 1;">
|
32 |
+
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
33 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
34 |
+
</a>
|
35 |
+
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
36 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
37 |
+
</a>
|
38 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
39 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
40 |
+
</a>
|
41 |
+
</div>
|
42 |
+
|
43 |
+
<div align="center" style="line-height: 1;">
|
44 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
45 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
46 |
+
</a>
|
47 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
48 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
49 |
+
</a>
|
50 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
51 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
52 |
+
</a>
|
53 |
+
</div>
|
54 |
+
|
55 |
+
<div align="center" style="line-height: 1;">
|
56 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
|
57 |
+
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
58 |
+
</a>
|
59 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
|
60 |
+
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
61 |
+
</a>
|
62 |
+
</div>
|
63 |
+
<p align="center">
|
64 |
+
<a href="#4-api-platform">API Platform</a> |
|
65 |
+
<a href="#5-how-to-run-locally">How to Use</a> |
|
66 |
+
<a href="#6-license">License</a> |
|
67 |
+
</p>
|
68 |
+
|
69 |
+
|
70 |
+
<p align="center">
|
71 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a>
|
72 |
+
</p>
|
73 |
+
|
74 |
+
# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
|
75 |
+
|
76 |
+
## 1. Introduction
|
77 |
+
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
|
78 |
+
|
79 |
+
<p align="center">
|
80 |
+
<img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true">
|
81 |
+
</p>
|
82 |
+
|
83 |
+
|
84 |
+
In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found [here](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/supported_langs.txt).
|
85 |
+
|
86 |
+
## 2. Model Downloads
|
87 |
+
|
88 |
+
We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.
|
89 |
+
|
90 |
+
<div align="center">
|
91 |
+
|
92 |
+
| **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** |
|
93 |
+
| :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
|
94 |
+
| DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) |
|
95 |
+
| DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) |
|
96 |
+
| DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) |
|
97 |
+
| DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |
|
98 |
+
|
99 |
+
</div>
|
100 |
+
|
101 |
+
|
102 |
+
## 3. Chat Website
|
103 |
+
|
104 |
+
You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in)
|
105 |
+
|
106 |
+
## 4. API Platform
|
107 |
+
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/), and you can also pay-as-you-go at an unbeatable price.
|
108 |
+
<p align="center">
|
109 |
+
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true">
|
110 |
+
</p>
|
111 |
+
|
112 |
+
|
113 |
+
## 5. How to run locally
|
114 |
+
**Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
|
115 |
+
|
116 |
+
### Inference with Huggingface's Transformers
|
117 |
+
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
118 |
+
|
119 |
+
#### Code Completion
|
120 |
+
```python
|
121 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
122 |
+
import torch
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
|
124 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
125 |
+
input_text = "#write a quick sort algorithm"
|
126 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
127 |
+
outputs = model.generate(**inputs, max_length=128)
|
128 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
129 |
+
```
|
130 |
+
|
131 |
+
#### Code Insertion
|
132 |
+
```python
|
133 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
134 |
+
import torch
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
|
136 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
137 |
+
input_text = """<|fim▁begin|>def quick_sort(arr):
|
138 |
+
if len(arr) <= 1:
|
139 |
+
return arr
|
140 |
+
pivot = arr[0]
|
141 |
+
left = []
|
142 |
+
right = []
|
143 |
+
<|fim▁hole|>
|
144 |
+
if arr[i] < pivot:
|
145 |
+
left.append(arr[i])
|
146 |
+
else:
|
147 |
+
right.append(arr[i])
|
148 |
+
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
|
149 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
150 |
+
outputs = model.generate(**inputs, max_length=128)
|
151 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
152 |
+
```
|
153 |
+
|
154 |
+
#### Chat Completion
|
155 |
+
|
156 |
+
```python
|
157 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
158 |
+
import torch
|
159 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
|
160 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
161 |
+
messages=[
|
162 |
+
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
163 |
+
]
|
164 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
165 |
+
# tokenizer.eos_token_id is the id of <|EOT|> token
|
166 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
167 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
168 |
+
```
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
|
173 |
+
|
174 |
+
An example of chat template is as belows:
|
175 |
+
|
176 |
+
```bash
|
177 |
+
<|begin▁of▁sentence|>User: {user_message_1}
|
178 |
+
|
179 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
180 |
+
|
181 |
+
Assistant:
|
182 |
+
```
|
183 |
+
|
184 |
+
You can also add an optional system message:
|
185 |
+
|
186 |
+
```bash
|
187 |
+
<|begin▁of▁sentence|>{system_message}
|
188 |
+
|
189 |
+
User: {user_message_1}
|
190 |
+
|
191 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
192 |
+
|
193 |
+
Assistant:
|
194 |
+
```
|
195 |
+
|
196 |
+
### Inference with vLLM (recommended)
|
197 |
+
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
|
198 |
+
|
199 |
+
```python
|
200 |
+
from transformers import AutoTokenizer
|
201 |
+
from vllm import LLM, SamplingParams
|
202 |
+
|
203 |
+
max_model_len, tp_size = 8192, 1
|
204 |
+
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
205 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
206 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
207 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
208 |
+
|
209 |
+
messages_list = [
|
210 |
+
[{"role": "user", "content": "Who are you?"}],
|
211 |
+
[{"role": "user", "content": "write a quick sort algorithm in python."}],
|
212 |
+
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
|
213 |
+
]
|
214 |
+
|
215 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
216 |
+
|
217 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
218 |
+
|
219 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
220 |
+
print(generated_text)
|
221 |
+
```
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
## 6. License
|
226 |
+
|
227 |
+
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.
|
228 |
+
|
229 |
+
|
230 |
+
## 7. Contact
|
231 |
+
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|