qaihm-bot commited on
Commit
f76c27f
·
verified ·
1 Parent(s): f4bb115

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -9
README.md CHANGED
@@ -1,16 +1,15 @@
1
  ---
2
  library_name: pytorch
3
- license: llama3
4
  tags:
5
  - llm
6
  - generative_ai
7
- - quantized
8
  - android
9
  pipeline_tag: text-generation
10
 
11
  ---
12
 
13
- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/llama_v3_1_8b_chat_quantized/web-assets/model_demo.png)
14
 
15
  # Llama-v3.1-8B-Chat: Optimized for Mobile Deployment
16
  ## State-of-the-art large language model useful on a variety of language understanding and generation tasks
@@ -21,11 +20,11 @@ Llama 3 is a family of LLMs. The "Chat" at the end indicates that the model is o
21
  This model is an implementation of Llama-v3.1-8B-Chat found [here](https://github.com/meta-llama/llama3/tree/main).
22
 
23
 
24
- More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/llama_v3_1_8b_chat_quantized).
25
 
26
  ### Model Details
27
 
28
- - **Model Type:** Text generation
29
  - **Model Stats:**
30
  - Input sequence length for Prompt Processor: 128
31
  - Context length: 4096
@@ -45,10 +44,8 @@ This model is an implementation of Llama-v3.1-8B-Chat found [here](https://githu
45
  - TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens).
46
  - Response Rate: Rate of response generation after the first response token.
47
 
48
- | Model | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
49
- |---|---|---|---|---|---|
50
- | Llama-v3.1-8B-Chat | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 13.0546 | 0.154517 - 4.944544 | -- | -- |
51
- | Llama-v3.1-8B-Chat | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 9.357 | 0.207727 - 6.647264 | -- | -- |
52
 
53
  ## Deploying Llama 3.1 on-device
54
 
 
1
  ---
2
  library_name: pytorch
3
+ license: other
4
  tags:
5
  - llm
6
  - generative_ai
 
7
  - android
8
  pipeline_tag: text-generation
9
 
10
  ---
11
 
12
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/llama_v3_1_8b_chat/web-assets/model_demo.png)
13
 
14
  # Llama-v3.1-8B-Chat: Optimized for Mobile Deployment
15
  ## State-of-the-art large language model useful on a variety of language understanding and generation tasks
 
20
  This model is an implementation of Llama-v3.1-8B-Chat found [here](https://github.com/meta-llama/llama3/tree/main).
21
 
22
 
23
+ More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/llama_v3_1_8b_chat).
24
 
25
  ### Model Details
26
 
27
+ - **Model Type:** Model_use_case.text_generation
28
  - **Model Stats:**
29
  - Input sequence length for Prompt Processor: 128
30
  - Context length: 4096
 
44
  - TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens).
45
  - Response Rate: Rate of response generation after the first response token.
46
 
47
+ | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
48
+ |---|---|---|---|---|---|---|---|---|
 
 
49
 
50
  ## Deploying Llama 3.1 on-device
51