Quentin Gallouédec commited on
Commit
62a5cad
·
1 Parent(s): b3fc278

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalkerHardcore-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalkerHardcore-v3
16
+ type: BipedalWalkerHardcore-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -20.90 +/- 57.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **BipedalWalkerHardcore-v3**
25
+ This is a trained model of a **A2C** agent playing **BipedalWalkerHardcore-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('ent_coef', 0.001),
66
+ ('gae_lambda', 0.9),
67
+ ('gamma', 0.99),
68
+ ('learning_rate', 'lin_0.0008'),
69
+ ('max_grad_norm', 0.5),
70
+ ('n_envs', 32),
71
+ ('n_steps', 8),
72
+ ('n_timesteps', 200000000.0),
73
+ ('normalize', True),
74
+ ('normalize_advantage', False),
75
+ ('policy', 'MlpPolicy'),
76
+ ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
77
+ ('use_rms_prop', True),
78
+ ('use_sde', True),
79
+ ('vf_coef', 0.4),
80
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
81
+ ```
a2c-BipedalWalkerHardcore-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35bc9c1d72b6acf6a1e7f7e700a2d37a867e6e33c0749929d228d53bdea69e4f
3
+ size 129997
a2c-BipedalWalkerHardcore-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
a2c-BipedalWalkerHardcore-v3/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5e3e12ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5e3e12f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5e3e14040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5e3e140d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd5e3e14160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd5e3e141f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5e3e14280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5e3e14310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd5e3e143a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5e3e14430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5e3e144c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5e3e14550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd5e3e15080>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 24
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 4
54
+ ],
55
+ "low": "[-1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True]",
58
+ "bounded_above": "[ True True True True]",
59
+ "_np_random": "RandomState(MT19937)"
60
+ },
61
+ "n_envs": 1,
62
+ "num_timesteps": 200000000,
63
+ "_total_timesteps": 200000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": 0,
66
+ "action_noise": null,
67
+ "start_time": 1675946970755884475,
68
+ "learning_rate": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVPwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxML2hvbWUvcWdhbGxvdWVkZWMvZW52X2JlbmNobWFyay9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSYBQwIABpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0o24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
71
+ },
72
+ "tensorboard_log": "runs/BipedalWalkerHardcore-v3__a2c__2089306450__1675946966/BipedalWalkerHardcore-v3",
73
+ "lr_schedule": {
74
+ ":type:": "<class 'function'>",
75
+ ":serialized:": "gAWVPwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxML2hvbWUvcWdhbGxvdWVkZWMvZW52X2JlbmNobWFyay9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSYBQwIABpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0o24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
76
+ },
77
+ "_last_obs": null,
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAAcONDuptVS3UEWBOkASg7xWXbw97JequiA6XD+H+Ro7AACAPxmiBD26lKq6RZNaPyBKcToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP5YONDv9bU41VT/SuHESg7wtxrw9kAl0ObgxXD9br586AACAP+NsBT1cCXQ5yotaP6wVJrkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP3XtMzvUzlY3ctTaup0Sg7wEkb09JQB+OwAWXD87Ety6AACAPwGXBj1l/X07vX5aPwPTLLsAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj8AAIA/AACAP5UENDtIdZU2Xz8Yun4Sg7x9BL09TbewOiopXD9wn605AACAP/PIBT3dtbA6u4daP8t6cLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj9JnHk/AACAP9L9Mzv4JuM2jGRnuoYSg7x4K709SEoGO94jXD/LPm25AACAP5cBBj1KSQY7ToVaP9u+troAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAP58QNDsoR9i1+nEDOWgSg7yDrbw9lHYtuUw0XD/L98c6AACAP+1CBT0ecy25Z41aP8hY9TgAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAPwT1MzvDhSU3b52oupISg7ySX70947ZDO8scXD83vH66AACAP51OBj0otUM78YFaP5kqBbsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP2gQNDslcS22w8xSOWQSg7w4p7w9uxaLua00XD9zoNE6AACAP0c0BT21FIu5AI5aP6S7RDkAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj8AAIA/AACAP9wLNDt6dt23JJcGOxASg7wv+7s9F50xuxZBXD9TKV87AACAP53cAz3ymTG7cZpaP084+zoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP+kLNDubZdm3jB4EOxASg7wp/7s9RVouu7tAXD/VwFw7AACAP4XjAz0wVy67MJpaP4eb9joAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj94eHA/AACAPxPtMzsMrFY3KrDaup0Sg7w9kL095dV9OyoWXD9lz9u6AACAP+GWBj1X0307xH5aP5O1LLsAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj8AAIA/AACAP1IPNDszieq2s4gOOlUSg7yihrw9nRg8uhA3XD+/af06AACAP+vyBD0QFTy6ZZBaP+0FBToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj/de3A/AACAP48MNDso/ry3BLflOh0Sg7wCF7w9pJIXuw8/XD+97Us7AACAP3sVBD30jxe7UJhaP6tj1joAAIA/ZrLhPo9C5D6iP+w+Wab6Pvq6CD/nOho/zYo1P3TMYj8AAIA/AACAPwP5MzuUTBA3rP+Suo4Sg7y8Sr09y58qO5UfXD/t6C66AACAP5EvBj0Vnio7QoNaPwkw6LoAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj9BnHk/AACAPwrnMzvSx303V0MBu6QSg7xAub09pAmWO3UQXD8/rhK7AACAPxHRBj0uCJY7NnxaP8AsTLsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj80nHk/AACAP48INDsULjs2lKu+uXoSg7yC57w96U9dOiItXD8Y5j86AACAPzWdBT3mTl06vYlaP9yWFroAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAP6wONDu8Bie3tgJLOkoSg7yhcbw9l/OFupc4XD+fcQ07AACAP//IBD1x8YW67pFaPwd3PToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP8wONDsN6RK3l5EyOk8Sg7ymerw9iaZruus3XD/Xewc7AACAP4PbBD1Jomu6MJFaP12nJjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPzv7MztmwwA3ICyDuooSg7yyOr09GUEYO8ghXD+D7ei5AACAP8kXBj2QPxg7UoRaP1cvz7oAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAPzIGNDsqPH02iPsAunwSg7zo+Lw9NLaVOswqXD8/xAE6AACAP3W3BT0ctZU6hYhaP1G7S7oAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAP38ONDtYYz+3RqBoOkUSg7wEZ7w9Z36ZumQ5XD9ZqRQ7AACAPxm1BD2we5m6lpJaP7gaWToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP10NNDsv04q3b72oOjISg7z9Qbw9NK7eugw8XD8ZNi47AACAPy1qBD0Vqt66VJVaPyN7nToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP8DyMzu3VjM3cbK2upQSg7wibb09hA9UO+EaXD8JXZm6AACAP21hBj0ZDVQ7IIFaP+dIELsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP6sLNDsIAOU1Pk9puXQSg7xv1rw9AGgHOnsvXD+4GII6AACAP7+CBT3CZQc66opaP6VCuLkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAPw0GNDsmy3U2KmX6uXoSg7wR9rw91lGROjIrXD97wAg6AACAP9OyBT09UJE62IhaP4/ARboAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAPx8ONDt/aGy3d6uPOjsSg7z3U7w9NJi9urQ6XD8Y/iE7AACAP/uOBD3tlL269ZNaP1oVhjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP/kPNDtgrYi2BCCmOV8Sg7zOm7w9lTrbuZo1XD8VbeA6AACAP4keBT12Ntu5xo5aP0MKmzkAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP/ULNDvyu9O3g60AOxMSg7yXA7w9ms8pu3hAXD9dZlk7AACAP4XsAz2bzCm76JlaPwsv8DoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP5kQNDutb5e1Sw64OGoSg7wWsbw9NOPyuAc0XD83KcM6AACAP8tJBT2w3/K4LI1aP2XGqzgAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj/xfHA/AACAP80NNDv2eIW3OTuiOjQSg7y3Rrw9HRfWuqg7XD8kCis7AACAPxd0BD1jE9a66JRaPyJolzoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP74CNDtc2ak2PQctuoASg7wyD709lNbIOrwnXD8Av0E5AACAPyvZBT0s1Mg6/YZaP5eniLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj8AAIA/AACAPyTqMzu2sWs3jhrwuqESg7zcpr09tliLO/oSXD/prAG7AACAP/+2Bj1PV4s7Sn1aPx2gPbsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2WDhJM1HL0CUhpRSlIwBbJRNzQKMAXSUR0ERGJ+ME/0NdX2UKGgGaAloD0MIXYdqSrIOS8CUhpRSlGgVTdAHaBZHQREYn7kIHC51fZQoaAZoCWgPQwhu36P+etNZwJSGlFKUaBVNBQFoFkdBERiuKJP69HV9lChoBmgJaA9DCPA2b5wUvEvAlIaUUpRoFUu6aBZHQREY+++FUQ11fZQoaAZoCWgPQwivWwTG+mYgwJSGlFKUaBVN0AdoFkdBERj9mPuG9HV9lChoBmgJaA9DCCS1UDI5JUfAlIaUUpRoFU3QB2gWR0ERGP39b9qDdX2UKGgGaAloD0MI9BWkGYvAYMCUhpRSlGgVTWQDaBZHQREY//TFERd1fZQoaAZoCWgPQwhMcOoDyd9JwJSGlFKUaBVN0AdoFkdBERkCpHAh0XV9lChoBmgJaA9DCMZtNIC3NlDAlIaUUpRoFU3QB2gWR0ERGQOGwFC+dX2UKGgGaAloD0MIeuBjsOJeV8CUhpRSlGgVS9hoFkdBERkGyYb833V9lChoBmgJaA9DCGJmn8coCUJAlIaUUpRoFU3QB2gWR0ERGQeQXuVpdX2UKGgGaAloD0MIkpbK2xE4QMCUhpRSlGgVTdAHaBZHQREZCsrqMWJ1fZQoaAZoCWgPQwio34Wt2VhSwJSGlFKUaBVN0AdoFkdBERkPECaJAXV9lChoBmgJaA9DCFopBHKJr0zAlIaUUpRoFU3QB2gWR0ERGRAlY6n0dX2UKGgGaAloD0MI3PC76ZaTQ8CUhpRSlGgVTdAHaBZHQREZEdBkI5Z1fZQoaAZoCWgPQwjAPc+fNi5FwJSGlFKUaBVN0AdoFkdBERkSM8B+4XV9lChoBmgJaA9DCN/foL16y2BAlIaUUpRoFU1IBmgWR0ERGRQs/UvxdX2UKGgGaAloD0MIjUY+r3hlUMCUhpRSlGgVTSsBaBZHQREZF0Z8KHB1fZQoaAZoCWgPQwjSG+4jt7VQwJSGlFKUaBVLq2gWR0ERGRhMdxQ0dX2UKGgGaAloD0MIsvZ3tkdZQ8CUhpRSlGgVTdAHaBZHQREZGL/1QIl1fZQoaAZoCWgPQwhtb7ckB7RYwJSGlFKUaBVN0AdoFkdBERkaGFlCkXV9lChoBmgJaA9DCAVu3c1TpUFAlIaUUpRoFU3QB2gWR0ERGRvFoUSJdX2UKGgGaAloD0MITgrzHmfaJcCUhpRSlGgVTdAHaBZHQREZG9FOwgV1fZQoaAZoCWgPQwguxsA6jv9FwJSGlFKUaBVN0AdoFkdBERlnefnOjnV9lChoBmgJaA9DCAlTlEvj+0/AlIaUUpRoFUuvaBZHQREZbot4zJp1fZQoaAZoCWgPQwiC/kKPGLtRwJSGlFKUaBVL+mgWR0ERGW8MUVSGdX2UKGgGaAloD0MIajS5GAPGVECUhpRSlGgVTdAHaBZHQREZcjBw++x1fZQoaAZoCWgPQwhJL2r3q9pKwJSGlFKUaBVN0AdoFkdBERlyyhAWznV9lChoBmgJaA9DCKPmq+RjPyPAlIaUUpRoFU3QB2gWR0ERGXcdALRbdX2UKGgGaAloD0MIUG9GzVevQcCUhpRSlGgVTf8BaBZHQREZeg79ycV1fZQoaAZoCWgPQwjQfw9eu7wiQJSGlFKUaBVN0AdoFkdBERl7DqGDc3V9lChoBmgJaA9DCGmM1lHVjE/AlIaUUpRoFU3QB2gWR0ERGYCZMg2ZdX2UKGgGaAloD0MIkGgCRSxKWECUhpRSlGgVTdAHaBZHQREZgcgQ6IZ1fZQoaAZoCWgPQwhjm1Q01rI0wJSGlFKUaBVN0AdoFkdBERmGEVzp5nV9lChoBmgJaA9DCBkcJa/OsFhAlIaUUpRoFU3pA2gWR0ERGYZj+rEMdX2UKGgGaAloD0MIuOnPfqQkR8CUhpRSlGgVTdAHaBZHQREZinT/yXl1fZQoaAZoCWgPQwj20akrnwFMwJSGlFKUaBVL1WgWR0ERGYtTTa0ydX2UKGgGaAloD0MI+gs9YvSwTcCUhpRSlGgVTdAHaBZHQREZ08Fotcx1fZQoaAZoCWgPQwjytPzAVVBBQJSGlFKUaBVNeANoFkdBERnVdTYNAnV9lChoBmgJaA9DCGH/dW7arCzAlIaUUpRoFU3QB2gWR0ERGdajpHI7dX2UKGgGaAloD0MIlC79S1L1S8CUhpRSlGgVTdAHaBZHQREZ13rdFfB1fZQoaAZoCWgPQwjHR4szhmkqQJSGlFKUaBVN0AdoFkdBERnYOOQyRHV9lChoBmgJaA9DCNTxmIHKCEPAlIaUUpRoFU3QB2gWR0ERGdjc/t6YdX2UKGgGaAloD0MIYeEkzR9zFcCUhpRSlGgVTf0BaBZHQREZ2NTx5LR1fZQoaAZoCWgPQwiMoDGTqMdNwJSGlFKUaBVN0AdoFkdBERnZFuWKM3V9lChoBmgJaA9DCGTqruyCNFLAlIaUUpRoFU0WAWgWR0ERGdmQ6hg3dX2UKGgGaAloD0MIB7ZKsDh0TcCUhpRSlGgVTU0BaBZHQREZ3FzgMtt1fZQoaAZoCWgPQwiTVnxD4YZQwJSGlFKUaBVLqGgWR0ERGeCaYZ2qdX2UKGgGaAloD0MI3LdaJy6nRsCUhpRSlGgVTXUBaBZHQREZ61VtXPt1fZQoaAZoCWgPQwh0sz9Qblc4wJSGlFKUaBVNJAJoFkdBERnsJabF0nV9lChoBmgJaA9DCF+3CIz1g0DAlIaUUpRoFU34AWgWR0ERGezN0q6OdX2UKGgGaAloD0MI8Ps3L06YPcCUhpRSlGgVTe8BaBZHQREZ7z2c8T11fZQoaAZoCWgPQwhjey3ovZk4QJSGlFKUaBVN0AdoFkdBERnwlPuXu3V9lChoBmgJaA9DCA3C3O7lHkjAlIaUUpRoFU3QB2gWR0ERGfDGv8qGdX2UKGgGaAloD0MIPBQF+kSmRMCUhpRSlGgVTdAHaBZHQREZ8qr7fpF1fZQoaAZoCWgPQwg8iJ0pdHxDwJSGlFKUaBVN0AdoFkdBERn1cma6SXV9lChoBmgJaA9DCPRvl/267UDAlIaUUpRoFU3QB2gWR0ERGfZWcSXddX2UKGgGaAloD0MIuhKB6h8sT8CUhpRSlGgVS+BoFkdBERn3aTHKfXV9lChoBmgJaA9DCBMQk3AhQ0bAlIaUUpRoFU3QB2gWR0ERGj9xOk+HdX2UKGgGaAloD0MIi1JCsKo+RMCUhpRSlGgVTSUBaBZHQREaP3jxkNF1fZQoaAZoCWgPQwiiJCTSNixHwJSGlFKUaBVNGAFoFkdBERo/hoUSI3V9lChoBmgJaA9DCJzgm6bPpjDAlIaUUpRoFU2ZAmgWR0ERGkN/tx+8dX2UKGgGaAloD0MInBiSk4kyUsCUhpRSlGgVTdAHaBZHQREaR8CmMwV1fZQoaAZoCWgPQwhw7NlzmWNQwJSGlFKUaBVNaAFoFkdBERpJdbxEv3V9lChoBmgJaA9DCKgBg6RP4UbAlIaUUpRoFU3QB2gWR0ERGkp7CemOdX2UKGgGaAloD0MIK9uHvOX5UcCUhpRSlGgVS/NoFkdBERpKwnssx3V9lChoBmgJaA9DCCLgEKrUCVVAlIaUUpRoFU3QB2gWR0ERGkr4ZVGTdX2UKGgGaAloD0MIXtiarbzcIcCUhpRSlGgVTdAHaBZHQREaTZwQlKN1fZQoaAZoCWgPQwiADvPlhQthwJSGlFKUaBVNiwNoFkdBERpOPsPatnV9lChoBmgJaA9DCEvMs5JWhEzAlIaUUpRoFU0QAWgWR0ERGk9Hvc8DdX2UKGgGaAloD0MIvhb03hgCPMCUhpRSlGgVTREBaBZHQREaT2c1wYN1fZQoaAZoCWgPQwgnFY21v4dDwJSGlFKUaBVN0AdoFkdBERpTDW8RMHV9lChoBmgJaA9DCNwPeGAApUjAlIaUUpRoFU3QB2gWR0ERGlb8stkGdX2UKGgGaAloD0MIZVBtcCKJZ0CUhpRSlGgVTdAHaBZHQREaV2ZyMk11fZQoaAZoCWgPQwisVbsmpNtXwJSGlFKUaBVLkmgWR0ERGlpsRg7YdX2UKGgGaAloD0MIU5W2uMZiVMCUhpRSlGgVS4xoFkdBERpeLE5yVHV9lChoBmgJaA9DCOCCbFm+FjtAlIaUUpRoFU3QB2gWR0ERGl9ojv/jdX2UKGgGaAloD0MIcTyfAfUeNUCUhpRSlGgVTdAHaBZHQREaX/JcxCZ1fZQoaAZoCWgPQwiQ9dTqq59bQJSGlFKUaBVN0AdoFkdBERpjCgam43V9lChoBmgJaA9DCNB9ObNdc0nAlIaUUpRoFU3QB2gWR0ERGmOvv0AcdX2UKGgGaAloD0MIJ07udygSKMCUhpRSlGgVTdAHaBZHQREawh/k/8l1fZQoaAZoCWgPQwjwNQTHZUZBQJSGlFKUaBVN1gJoFkdBERrD9HavinV9lChoBmgJaA9DCIyBdRw/aVPAlIaUUpRoFU3QB2gWR0ERGsX/QrtmdX2UKGgGaAloD0MIfentz0VCU8CUhpRSlGgVS4loFkdBERrIrBN21XV9lChoBmgJaA9DCCLhe3+DOEPAlIaUUpRoFU3QB2gWR0ERGsyZo0yhdX2UKGgGaAloD0MI2PULdsMeVMCUhpRSlGgVS3toFkdBERrT1jc2znV9lChoBmgJaA9DCGx4eqUs10bAlIaUUpRoFU3QB2gWR0ERGtbd5le4dX2UKGgGaAloD0MILnb7rDITPsCUhpRSlGgVTdAHaBZHQREa3BqDbrV1fZQoaAZoCWgPQwhpHVVNELlRwJSGlFKUaBVLvWgWR0ERGt2ntShrdX2UKGgGaAloD0MIRBX+DG8SM8CUhpRSlGgVTdAHaBZHQREa3itcfNl1fZQoaAZoCWgPQwgP8nowKUY3wJSGlFKUaBVN0AdoFkdBERre8s3AEnV9lChoBmgJaA9DCH6NJEG49EnAlIaUUpRoFU3QB2gWR0ERGt/DBuXNdX2UKGgGaAloD0MIo+iBj8FiUMCUhpRSlGgVTagCaBZHQREa4GQ0XP91fZQoaAZoCWgPQwhSYWwhyJ1SwJSGlFKUaBVN0AdoFkdBERroOk9EC3V9lChoBmgJaA9DCHO6LCY2r03AlIaUUpRoFU3QB2gWR0ERG0D53s5XdX2UKGgGaAloD0MIY7Mj1XcaVMCUhpRSlGgVTdAHaBZHQREbQjQ53kh1fZQoaAZoCWgPQwhZ94+F6CQ5wJSGlFKUaBVN0AdoFkdBERtD6Q6p53V9lChoBmgJaA9DCH16bMuACzdAlIaUUpRoFU3QB2gWR0ERG0ZIzvZzdX2UKGgGaAloD0MIcobijjcOVMCUhpRSlGgVS4ZoFkdBERtGa4OMEXV9lChoBmgJaA9DCCOgwhGkwETAlIaUUpRoFU3QB2gWR0ERG0cfTkQxdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 781250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.001,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-BipedalWalkerHardcore-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bec4a6387c89b2335abbcff0017bed79a57ddb84dbb4894b37d20d332feffea
3
+ size 52094
a2c-BipedalWalkerHardcore-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0556bda7b303fb6c58c8fbc6678bcd502d7e362e78e8cc538ffa6cbecd408d39
3
+ size 52798
a2c-BipedalWalkerHardcore-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-BipedalWalkerHardcore-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - BipedalWalkerHardcore-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2089306450
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/BipedalWalkerHardcore-v3__a2c__2089306450__1675946966
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.001
4
+ - - gae_lambda
5
+ - 0.9
6
+ - - gamma
7
+ - 0.99
8
+ - - learning_rate
9
+ - lin_0.0008
10
+ - - max_grad_norm
11
+ - 0.5
12
+ - - n_envs
13
+ - 32
14
+ - - n_steps
15
+ - 8
16
+ - - n_timesteps
17
+ - 200000000.0
18
+ - - normalize
19
+ - true
20
+ - - normalize_advantage
21
+ - false
22
+ - - policy
23
+ - MlpPolicy
24
+ - - policy_kwargs
25
+ - dict(log_std_init=-2, ortho_init=False)
26
+ - - use_rms_prop
27
+ - true
28
+ - - use_sde
29
+ - true
30
+ - - vf_coef
31
+ - 0.4
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae2b73067689be13b2fe502964b28b4450ffcfecbb8bbcfcff9a1f17a065ff5c
3
+ size 215719
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -20.903659200000003, "std_reward": 57.482277089482764, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:10:06.679616"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4f23a48cef0395121033ce1198954074afa9aaa4784ffb855560da0663ccf6c
3
+ size 7294709
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f62f5488afaebeaf8fc28c236d66736353e7b140e1f53bd2ad5c1eed3c4542e7
3
+ size 7818