Quentin Gallouédec
commited on
Commit
·
62a5cad
1
Parent(s):
b3fc278
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-BipedalWalkerHardcore-v3.zip +3 -0
- a2c-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- a2c-BipedalWalkerHardcore-v3/data +106 -0
- a2c-BipedalWalkerHardcore-v3/policy.optimizer.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/policy.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- a2c-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- args.yml +83 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -20.90 +/- 57.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env BipedalWalkerHardcore-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.001),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.99),
|
68 |
+
('learning_rate', 'lin_0.0008'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 32),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 200000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35bc9c1d72b6acf6a1e7f7e700a2d37a867e6e33c0749929d228d53bdea69e4f
|
3 |
+
size 129997
|
a2c-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd5e3e12ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd5e3e12f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd5e3e14040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd5e3e140d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd5e3e14160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd5e3e141f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd5e3e14280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd5e3e14310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd5e3e143a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd5e3e14430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd5e3e144c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd5e3e14550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd5e3e15080>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
24
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
4
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True]",
|
58 |
+
"bounded_above": "[ True True True True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 200000000,
|
63 |
+
"_total_timesteps": 200000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675946970755884475,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVPwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxML2hvbWUvcWdhbGxvdWVkZWMvZW52X2JlbmNobWFyay9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSYBQwIABpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0o24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/BipedalWalkerHardcore-v3__a2c__2089306450__1675946966/BipedalWalkerHardcore-v3",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVPwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxML2hvbWUvcWdhbGxvdWVkZWMvZW52X2JlbmNobWFyay9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSYBQwIABpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0o24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAAcONDuptVS3UEWBOkASg7xWXbw97JequiA6XD+H+Ro7AACAPxmiBD26lKq6RZNaPyBKcToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP5YONDv9bU41VT/SuHESg7wtxrw9kAl0ObgxXD9br586AACAP+NsBT1cCXQ5yotaP6wVJrkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAP3XtMzvUzlY3ctTaup0Sg7wEkb09JQB+OwAWXD87Ety6AACAPwGXBj1l/X07vX5aPwPTLLsAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj8AAIA/AACAP5UENDtIdZU2Xz8Yun4Sg7x9BL09TbewOiopXD9wn605AACAP/PIBT3dtbA6u4daP8t6cLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj9JnHk/AACAP9L9Mzv4JuM2jGRnuoYSg7x4K709SEoGO94jXD/LPm25AACAP5cBBj1KSQY7ToVaP9u+troAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAP58QNDsoR9i1+nEDOWgSg7yDrbw9lHYtuUw0XD/L98c6AACAP+1CBT0ecy25Z41aP8hY9TgAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAPwT1MzvDhSU3b52oupISg7ySX70947ZDO8scXD83vH66AACAP51OBj0otUM78YFaP5kqBbsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP2gQNDslcS22w8xSOWQSg7w4p7w9uxaLua00XD9zoNE6AACAP0c0BT21FIu5AI5aP6S7RDkAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj8AAIA/AACAP9wLNDt6dt23JJcGOxASg7wv+7s9F50xuxZBXD9TKV87AACAP53cAz3ymTG7cZpaP084+zoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP+kLNDubZdm3jB4EOxASg7wp/7s9RVouu7tAXD/VwFw7AACAP4XjAz0wVy67MJpaP4eb9joAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj94eHA/AACAPxPtMzsMrFY3KrDaup0Sg7w9kL095dV9OyoWXD9lz9u6AACAP+GWBj1X0307xH5aP5O1LLsAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj8AAIA/AACAP1IPNDszieq2s4gOOlUSg7yihrw9nRg8uhA3XD+/af06AACAP+vyBD0QFTy6ZZBaP+0FBToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj/de3A/AACAP48MNDso/ry3BLflOh0Sg7wCF7w9pJIXuw8/XD+97Us7AACAP3sVBD30jxe7UJhaP6tj1joAAIA/ZrLhPo9C5D6iP+w+Wab6Pvq6CD/nOho/zYo1P3TMYj8AAIA/AACAPwP5MzuUTBA3rP+Suo4Sg7y8Sr09y58qO5UfXD/t6C66AACAP5EvBj0Vnio7QoNaPwkw6LoAAIA/TrLhPndC5D6JP+w+P6b6Puu6CD/XOho/uoo1P1vMYj9BnHk/AACAPwrnMzvSx303V0MBu6QSg7xAub09pAmWO3UQXD8/rhK7AACAPxHRBj0uCJY7NnxaP8AsTLsAAIA/RbLhPm5C5D5/P+w+Nab6Pua6CD/QOho/soo1P1LMYj80nHk/AACAP48INDsULjs2lKu+uXoSg7yC57w96U9dOiItXD8Y5j86AACAPzWdBT3mTl06vYlaP9yWFroAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAP6wONDu8Bie3tgJLOkoSg7yhcbw9l/OFupc4XD+fcQ07AACAP//IBD1x8YW67pFaPwd3PToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP8wONDsN6RK3l5EyOk8Sg7ymerw9iaZruus3XD/Xewc7AACAP4PbBD1Jomu6MJFaP12nJjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAPzv7MztmwwA3ICyDuooSg7yyOr09GUEYO8ghXD+D7ei5AACAP8kXBj2QPxg7UoRaP1cvz7oAAIA/UbLhPnpC5D6MP+w+Qqb6Pu26CD/ZOho/vIo1P17MYj8AAIA/AACAPzIGNDsqPH02iPsAunwSg7zo+Lw9NLaVOswqXD8/xAE6AACAP3W3BT0ctZU6hYhaP1G7S7oAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAP38ONDtYYz+3RqBoOkUSg7wEZ7w9Z36ZumQ5XD9ZqRQ7AACAPxm1BD2we5m6lpJaP7gaWToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP10NNDsv04q3b72oOjISg7z9Qbw9NK7eugw8XD8ZNi47AACAPy1qBD0Vqt66VJVaPyN7nToAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP8DyMzu3VjM3cbK2upQSg7wibb09hA9UO+EaXD8JXZm6AACAP21hBj0ZDVQ7IIFaP+dIELsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP6sLNDsIAOU1Pk9puXQSg7xv1rw9AGgHOnsvXD+4GII6AACAP7+CBT3CZQc66opaP6VCuLkAAIA/WrLhPoNC5D6VP+w+TKb6PvK6CD/fOho/w4o1P2jMYj8AAIA/AACAPw0GNDsmy3U2KmX6uXoSg7wR9rw91lGROjIrXD97wAg6AACAP9OyBT09UJE62IhaP4/ARboAAIA/V7LhPoBC5D6SP+w+Sab6PvG6CD/dOho/wYo1P2XMYj8AAIA/AACAPx8ONDt/aGy3d6uPOjsSg7z3U7w9NJi9urQ6XD8Y/iE7AACAP/uOBD3tlL269ZNaP1oVhjoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP/kPNDtgrYi2BCCmOV8Sg7zOm7w9lTrbuZo1XD8VbeA6AACAP4keBT12Ntu5xo5aP0MKmzkAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP/ULNDvyu9O3g60AOxMSg7yXA7w9ms8pu3hAXD9dZlk7AACAP4XsAz2bzCm76JlaPwsv8DoAAIA/Y7LhPoxC5D6fP+w+Vqb6Pvi6CD/lOho/y4o1P3HMYj8AAIA/AACAP5kQNDutb5e1Sw64OGoSg7wWsbw9NOPyuAc0XD83KcM6AACAP8tJBT2w3/K4LI1aP2XGqzgAAIA/XbLhPoZC5D6YP+w+T6b6PvS6CD/hOho/xoo1P2vMYj/xfHA/AACAP80NNDv2eIW3OTuiOjQSg7y3Rrw9HRfWuqg7XD8kCis7AACAPxd0BD1jE9a66JRaPyJolzoAAIA/YLLhPolC5D6bP+w+U6b6Pva6CD/jOho/yIo1P27MYj8AAIA/AACAP74CNDtc2ak2PQctuoASg7wyD709lNbIOrwnXD8Av0E5AACAPyvZBT0s1Mg6/YZaP5eniLoAAIA/VLLhPn1C5D6PP+w+Rab6Pu+6CD/bOho/voo1P2HMYj8AAIA/AACAPyTqMzu2sWs3jhrwuqESg7zcpr09tliLO/oSXD/prAG7AACAP/+2Bj1PV4s7Sn1aPx2gPbsAAIA/S7LhPnRC5D6FP+w+O6b6Pum6CD/VOho/t4o1P1jMYj8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2WDhJM1HL0CUhpRSlIwBbJRNzQKMAXSUR0ERGJ+ME/0NdX2UKGgGaAloD0MIXYdqSrIOS8CUhpRSlGgVTdAHaBZHQREYn7kIHC51fZQoaAZoCWgPQwhu36P+etNZwJSGlFKUaBVNBQFoFkdBERiuKJP69HV9lChoBmgJaA9DCPA2b5wUvEvAlIaUUpRoFUu6aBZHQREY+++FUQ11fZQoaAZoCWgPQwivWwTG+mYgwJSGlFKUaBVN0AdoFkdBERj9mPuG9HV9lChoBmgJaA9DCCS1UDI5JUfAlIaUUpRoFU3QB2gWR0ERGP39b9qDdX2UKGgGaAloD0MI9BWkGYvAYMCUhpRSlGgVTWQDaBZHQREY//TFERd1fZQoaAZoCWgPQwhMcOoDyd9JwJSGlFKUaBVN0AdoFkdBERkCpHAh0XV9lChoBmgJaA9DCMZtNIC3NlDAlIaUUpRoFU3QB2gWR0ERGQOGwFC+dX2UKGgGaAloD0MIeuBjsOJeV8CUhpRSlGgVS9hoFkdBERkGyYb833V9lChoBmgJaA9DCGJmn8coCUJAlIaUUpRoFU3QB2gWR0ERGQeQXuVpdX2UKGgGaAloD0MIkpbK2xE4QMCUhpRSlGgVTdAHaBZHQREZCsrqMWJ1fZQoaAZoCWgPQwio34Wt2VhSwJSGlFKUaBVN0AdoFkdBERkPECaJAXV9lChoBmgJaA9DCFopBHKJr0zAlIaUUpRoFU3QB2gWR0ERGRAlY6n0dX2UKGgGaAloD0MI3PC76ZaTQ8CUhpRSlGgVTdAHaBZHQREZEdBkI5Z1fZQoaAZoCWgPQwjAPc+fNi5FwJSGlFKUaBVN0AdoFkdBERkSM8B+4XV9lChoBmgJaA9DCN/foL16y2BAlIaUUpRoFU1IBmgWR0ERGRQs/UvxdX2UKGgGaAloD0MIjUY+r3hlUMCUhpRSlGgVTSsBaBZHQREZF0Z8KHB1fZQoaAZoCWgPQwjSG+4jt7VQwJSGlFKUaBVLq2gWR0ERGRhMdxQ0dX2UKGgGaAloD0MIsvZ3tkdZQ8CUhpRSlGgVTdAHaBZHQREZGL/1QIl1fZQoaAZoCWgPQwhtb7ckB7RYwJSGlFKUaBVN0AdoFkdBERkaGFlCkXV9lChoBmgJaA9DCAVu3c1TpUFAlIaUUpRoFU3QB2gWR0ERGRvFoUSJdX2UKGgGaAloD0MITgrzHmfaJcCUhpRSlGgVTdAHaBZHQREZG9FOwgV1fZQoaAZoCWgPQwguxsA6jv9FwJSGlFKUaBVN0AdoFkdBERlnefnOjnV9lChoBmgJaA9DCAlTlEvj+0/AlIaUUpRoFUuvaBZHQREZbot4zJp1fZQoaAZoCWgPQwiC/kKPGLtRwJSGlFKUaBVL+mgWR0ERGW8MUVSGdX2UKGgGaAloD0MIajS5GAPGVECUhpRSlGgVTdAHaBZHQREZcjBw++x1fZQoaAZoCWgPQwhJL2r3q9pKwJSGlFKUaBVN0AdoFkdBERlyyhAWznV9lChoBmgJaA9DCKPmq+RjPyPAlIaUUpRoFU3QB2gWR0ERGXcdALRbdX2UKGgGaAloD0MIUG9GzVevQcCUhpRSlGgVTf8BaBZHQREZeg79ycV1fZQoaAZoCWgPQwjQfw9eu7wiQJSGlFKUaBVN0AdoFkdBERl7DqGDc3V9lChoBmgJaA9DCGmM1lHVjE/AlIaUUpRoFU3QB2gWR0ERGYCZMg2ZdX2UKGgGaAloD0MIkGgCRSxKWECUhpRSlGgVTdAHaBZHQREZgcgQ6IZ1fZQoaAZoCWgPQwhjm1Q01rI0wJSGlFKUaBVN0AdoFkdBERmGEVzp5nV9lChoBmgJaA9DCBkcJa/OsFhAlIaUUpRoFU3pA2gWR0ERGYZj+rEMdX2UKGgGaAloD0MIuOnPfqQkR8CUhpRSlGgVTdAHaBZHQREZinT/yXl1fZQoaAZoCWgPQwj20akrnwFMwJSGlFKUaBVL1WgWR0ERGYtTTa0ydX2UKGgGaAloD0MI+gs9YvSwTcCUhpRSlGgVTdAHaBZHQREZ08Fotcx1fZQoaAZoCWgPQwjytPzAVVBBQJSGlFKUaBVNeANoFkdBERnVdTYNAnV9lChoBmgJaA9DCGH/dW7arCzAlIaUUpRoFU3QB2gWR0ERGdajpHI7dX2UKGgGaAloD0MIlC79S1L1S8CUhpRSlGgVTdAHaBZHQREZ13rdFfB1fZQoaAZoCWgPQwjHR4szhmkqQJSGlFKUaBVN0AdoFkdBERnYOOQyRHV9lChoBmgJaA9DCNTxmIHKCEPAlIaUUpRoFU3QB2gWR0ERGdjc/t6YdX2UKGgGaAloD0MIYeEkzR9zFcCUhpRSlGgVTf0BaBZHQREZ2NTx5LR1fZQoaAZoCWgPQwiMoDGTqMdNwJSGlFKUaBVN0AdoFkdBERnZFuWKM3V9lChoBmgJaA9DCGTqruyCNFLAlIaUUpRoFU0WAWgWR0ERGdmQ6hg3dX2UKGgGaAloD0MIB7ZKsDh0TcCUhpRSlGgVTU0BaBZHQREZ3FzgMtt1fZQoaAZoCWgPQwiTVnxD4YZQwJSGlFKUaBVLqGgWR0ERGeCaYZ2qdX2UKGgGaAloD0MI3LdaJy6nRsCUhpRSlGgVTXUBaBZHQREZ61VtXPt1fZQoaAZoCWgPQwh0sz9Qblc4wJSGlFKUaBVNJAJoFkdBERnsJabF0nV9lChoBmgJaA9DCF+3CIz1g0DAlIaUUpRoFU34AWgWR0ERGezN0q6OdX2UKGgGaAloD0MI8Ps3L06YPcCUhpRSlGgVTe8BaBZHQREZ7z2c8T11fZQoaAZoCWgPQwhjey3ovZk4QJSGlFKUaBVN0AdoFkdBERnwlPuXu3V9lChoBmgJaA9DCA3C3O7lHkjAlIaUUpRoFU3QB2gWR0ERGfDGv8qGdX2UKGgGaAloD0MIPBQF+kSmRMCUhpRSlGgVTdAHaBZHQREZ8qr7fpF1fZQoaAZoCWgPQwg8iJ0pdHxDwJSGlFKUaBVN0AdoFkdBERn1cma6SXV9lChoBmgJaA9DCPRvl/267UDAlIaUUpRoFU3QB2gWR0ERGfZWcSXddX2UKGgGaAloD0MIuhKB6h8sT8CUhpRSlGgVS+BoFkdBERn3aTHKfXV9lChoBmgJaA9DCBMQk3AhQ0bAlIaUUpRoFU3QB2gWR0ERGj9xOk+HdX2UKGgGaAloD0MIi1JCsKo+RMCUhpRSlGgVTSUBaBZHQREaP3jxkNF1fZQoaAZoCWgPQwiiJCTSNixHwJSGlFKUaBVNGAFoFkdBERo/hoUSI3V9lChoBmgJaA9DCJzgm6bPpjDAlIaUUpRoFU2ZAmgWR0ERGkN/tx+8dX2UKGgGaAloD0MInBiSk4kyUsCUhpRSlGgVTdAHaBZHQREaR8CmMwV1fZQoaAZoCWgPQwhw7NlzmWNQwJSGlFKUaBVNaAFoFkdBERpJdbxEv3V9lChoBmgJaA9DCKgBg6RP4UbAlIaUUpRoFU3QB2gWR0ERGkp7CemOdX2UKGgGaAloD0MIK9uHvOX5UcCUhpRSlGgVS/NoFkdBERpKwnssx3V9lChoBmgJaA9DCCLgEKrUCVVAlIaUUpRoFU3QB2gWR0ERGkr4ZVGTdX2UKGgGaAloD0MIXtiarbzcIcCUhpRSlGgVTdAHaBZHQREaTZwQlKN1fZQoaAZoCWgPQwiADvPlhQthwJSGlFKUaBVNiwNoFkdBERpOPsPatnV9lChoBmgJaA9DCEvMs5JWhEzAlIaUUpRoFU0QAWgWR0ERGk9Hvc8DdX2UKGgGaAloD0MIvhb03hgCPMCUhpRSlGgVTREBaBZHQREaT2c1wYN1fZQoaAZoCWgPQwgnFY21v4dDwJSGlFKUaBVN0AdoFkdBERpTDW8RMHV9lChoBmgJaA9DCNwPeGAApUjAlIaUUpRoFU3QB2gWR0ERGlb8stkGdX2UKGgGaAloD0MIZVBtcCKJZ0CUhpRSlGgVTdAHaBZHQREaV2ZyMk11fZQoaAZoCWgPQwisVbsmpNtXwJSGlFKUaBVLkmgWR0ERGlpsRg7YdX2UKGgGaAloD0MIU5W2uMZiVMCUhpRSlGgVS4xoFkdBERpeLE5yVHV9lChoBmgJaA9DCOCCbFm+FjtAlIaUUpRoFU3QB2gWR0ERGl9ojv/jdX2UKGgGaAloD0MIcTyfAfUeNUCUhpRSlGgVTdAHaBZHQREaX/JcxCZ1fZQoaAZoCWgPQwiQ9dTqq59bQJSGlFKUaBVN0AdoFkdBERpjCgam43V9lChoBmgJaA9DCNB9ObNdc0nAlIaUUpRoFU3QB2gWR0ERGmOvv0AcdX2UKGgGaAloD0MIJ07udygSKMCUhpRSlGgVTdAHaBZHQREawh/k/8l1fZQoaAZoCWgPQwjwNQTHZUZBQJSGlFKUaBVN1gJoFkdBERrD9HavinV9lChoBmgJaA9DCIyBdRw/aVPAlIaUUpRoFU3QB2gWR0ERGsX/QrtmdX2UKGgGaAloD0MIfentz0VCU8CUhpRSlGgVS4loFkdBERrIrBN21XV9lChoBmgJaA9DCCLhe3+DOEPAlIaUUpRoFU3QB2gWR0ERGsyZo0yhdX2UKGgGaAloD0MI2PULdsMeVMCUhpRSlGgVS3toFkdBERrT1jc2znV9lChoBmgJaA9DCGx4eqUs10bAlIaUUpRoFU3QB2gWR0ERGtbd5le4dX2UKGgGaAloD0MILnb7rDITPsCUhpRSlGgVTdAHaBZHQREa3BqDbrV1fZQoaAZoCWgPQwhpHVVNELlRwJSGlFKUaBVLvWgWR0ERGt2ntShrdX2UKGgGaAloD0MIRBX+DG8SM8CUhpRSlGgVTdAHaBZHQREa3itcfNl1fZQoaAZoCWgPQwgP8nowKUY3wJSGlFKUaBVN0AdoFkdBERre8s3AEnV9lChoBmgJaA9DCH6NJEG49EnAlIaUUpRoFU3QB2gWR0ERGt/DBuXNdX2UKGgGaAloD0MIo+iBj8FiUMCUhpRSlGgVTagCaBZHQREa4GQ0XP91fZQoaAZoCWgPQwhSYWwhyJ1SwJSGlFKUaBVN0AdoFkdBERroOk9EC3V9lChoBmgJaA9DCHO6LCY2r03AlIaUUpRoFU3QB2gWR0ERG0D53s5XdX2UKGgGaAloD0MIY7Mj1XcaVMCUhpRSlGgVTdAHaBZHQREbQjQ53kh1fZQoaAZoCWgPQwhZ94+F6CQ5wJSGlFKUaBVN0AdoFkdBERtD6Q6p53V9lChoBmgJaA9DCH16bMuACzdAlIaUUpRoFU3QB2gWR0ERG0ZIzvZzdX2UKGgGaAloD0MIcobijjcOVMCUhpRSlGgVS4ZoFkdBERtGa4OMEXV9lChoBmgJaA9DCCOgwhGkwETAlIaUUpRoFU3QB2gWR0ERG0cfTkQxdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 781250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.001,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-BipedalWalkerHardcore-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bec4a6387c89b2335abbcff0017bed79a57ddb84dbb4894b37d20d332feffea
|
3 |
+
size 52094
|
a2c-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0556bda7b303fb6c58c8fbc6678bcd502d7e362e78e8cc538ffa6cbecd408d39
|
3 |
+
size 52798
|
a2c-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- BipedalWalkerHardcore-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2089306450
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/BipedalWalkerHardcore-v3__a2c__2089306450__1675946966
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.001
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.99
|
8 |
+
- - learning_rate
|
9 |
+
- lin_0.0008
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 32
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 200000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae2b73067689be13b2fe502964b28b4450ffcfecbb8bbcfcff9a1f17a065ff5c
|
3 |
+
size 215719
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -20.903659200000003, "std_reward": 57.482277089482764, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T17:10:06.679616"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4f23a48cef0395121033ce1198954074afa9aaa4784ffb855560da0663ccf6c
|
3 |
+
size 7294709
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f62f5488afaebeaf8fc28c236d66736353e7b140e1f53bd2ad5c1eed3c4542e7
|
3 |
+
size 7818
|