
Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Coding Stable Diffusion 
form scratch in PyTorch

Umar Jamil
License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0): 
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Not for commercial use

https://github.com/hkproj/pytorch-stable-diffusion
https://creativecommons.org/licenses/by-nc/4.0/legalcode


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Topics and Prerequisites

Topics discussed

• Latent Diffusion Models (Stable Diffusion) from scratch 
in PyTorch. No other libraries used except for tokenizer.

• Maths of diffusion models as defined in the DDPM 
paper (simplified!)

• Classifier-Free Guidance
• Text – to – Image
• Image – to – Image
• Inpainting

Future videos

• Score-based models
• ODE and SDE theoretical framework for diffusion 

models
• Euler, Runge-Kutta and derived samplers.

Prerequisites

• Basics of probability and statistics (multivariate 
gaussian, conditional probability, marginal probability, 
likelihood, Bayers’ rule).
• I will give a non-maths intuition for most 

concepts.
• Basics of PyTorch and neural networks
• How the attention mechanism works (watch my video 

on the Transformer model).
• How convolution layers work

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

What is Stable Diffusion?

Stable Diffusion is a text-to-image deep learning model, based on diffusion models.
Introduced in 2022, developed by the CompViz Group at LMU Munich.
https://github.com/Stability-AI/stablediffusion

Picture of a dog with glasses

Prompt

Output

https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/Stability-AI/stablediffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

What is a generative model?

A generative model learns a probability distribution of the data set such that we can then sample from the distribution to create new 
instances of data. For example, if we have many pictures of cats and we train a generative model on it, we then sample from this 
distribution to create new images of cats.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Why do we model data as distributions?

• Imagine you’re a criminal, and you want to generate thousands of fake identities. Each fake identity, is made up of 
variables, representing the characteristics of a person (Age, Height).

• You can ask the Statistics Department of the Government to give you statistics about the age and the height of the 
population and then sample from these distributions.

Age: N(40, 302) Height: N(120, 1002)

• At first, you may sample from each distribution independently to create a 
fake identity, but that would produce unreasonable pairs of (Age, Height).

• To generate fake identities that make sense, you need the joint 
distribution, otherwise you may end up with an unreasonable pair of 
(Age, Height)

• We can also evaluate probabilities on one of the two variables using 
conditional probability and/or by marginalizing a variable.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Learning the distribution p(x) of our data.

• We have a data set made of up images, and we want to learn a very complex distribution that we can then use to 
sample from.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

X0 Z1 Z2 Z3
… ZT

Pure noiseOriginal image

Reverse process: Neural network

Forward process: Fixed

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

The math of diffusion models… simplified!

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, pp.6840-6851.

Reverse process p

Forward process q

Evidence Lower Bound (ELBO)

Just like with a VAE, we want to learn the 
parameters of the latent space

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

We take a sample from our dataset

We generate a random number t, between 1 and T

We sample some noise

We add noise to our image, and we train the model to learn to predict the amount of noise present in it.

We sample some noise

We keep denoising the image progressively for T steps.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

U-Net

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-
241). Springer International Publishing.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

X0 Z1 Z2 Z3
… ZT

Pure noiseOriginal image

Reverse process: Neural network

Forward process: Fixed

How to generate new data?

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

How to condition the reverse process?

• Since we start from noise in the reserve process, how can the model know what we want as output? How can the 
model understand our prompt? This is why we need to condition the reverse process.

• If we want to condition our network, we could train a model to learn a joint distribution of the data and the 
conditioning signal 𝑝(𝑥, 𝑐), and then sample from this joint distribution. This, however, requires the training of a 
model for each separate conditioning signal.

• Another approach, called classifier guidance, involves the training of a separate model to condition the output.

• The latest and most successful approach is called classifier-free guidance, in which, instead of training two 
networks, one conditional network and an unconditional network, we train a single network and during training, with 
some probability, we set the conditional signal to zero, this way the network becomes a mix of conditioned and 
unconditioned network, and we can take the conditioned and unconditioned output and combine them with a 
weight that indicates how much we want the network to pay attention to the conditioning signal.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Classifier Free Guidance (Training)

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-
241). Springer International Publishing.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Classifier Free Guidance (Inference)

Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and 
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-
241). Springer International Publishing.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Classifier Free Guidance (Combine output)

o𝑢𝑡𝑝𝑢𝑡 = 𝑤 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑

A weight that indicates how much we want the model 
to pay attention to the conditioning signal (prompt).

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

CLIP (Contrastive Language–Image Pre-training)

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

X0 Z1 Z2 Z3
… ZT

Pure noiseOriginal image

Reverse process: Neural network

Forward process: Fixed

Performing many steps on big images is slow

Since the latent variables have the same dimension (size of the vector) as the original data, if we want to perform many steps to denoise 
an image, that would result in a lot of steps through the Unet, which can be very slow if the matrix representing our data/latent is large. 
What if we could “compress” our data before running it through the forward/reverse process (UNet)?

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Latent Diffusion Model

• Stable Diffusion is a latent diffusion model, in which we don’t learn the distribution p(x) of our data set of images, but 
rather, the distribution of a latent representation of our data by using a Variational Autoencoder.

• This allows us to reduce the computation we need to perform the steps needed to generate a sample, because each 
data will not be represented by a 512x512 image, but its latent representation, which is 64x64.

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

What is an Autoencoder?

X Encoder Z X’Decoder

Input

Code

Reconstructed 
Input

[1.2, 3.65, …]

[1.6, 6.00, …]

[10.1, 9.0, …]

[2.5, 7.0, …]

* The values are random and 
have no meaning

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

What’s the problem with Autoencoders?

The code learned by the model makes no sense. That is, the model can just assign any vector to the inputs without the numbers in the vector representing any 
pattern. The model doesn’t capture any semantic relationship between the data.

X Encoder X’Decoder

Input

Code

Reconstructed 
Input

Z

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Introducing the Variational Autoencoder

The variational autoencoder, instead of learning a code, learns a “latent space”. The latent space represents the parameters of a (multivariate) distribution.

X Encoder X’Decoder

Input

Latent Space

Reconstructed 
Input

Z

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Random 
Noise

Architecture (Text-To-Image)

Encoder Z

Text Prompt
CLIP 

Encoder
Prompt 

Embeddings

Time 

Time 
Embeddings

X’DecoderZ’

Scheduler

A dog with glasses

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

X

Architecture (Image-To-Image)

Encoder Z

Text Prompt
CLIP 

Encoder
Prompt 

Embeddings

Time 

Time 
Embeddings

X’DecoderZ’

Scheduler

A dog with glasses

Add noise to latent

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

X

Architecture (In-Painting): how to fool models

Encoder Z

Text Prompt
CLIP 

Encoder
Prompt 

Embeddings

Time 

Time 
Embeddings

X’DecoderZ’

Scheduler

A dog running

Combine with latent at current time step

Add noise

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Layer Normalization

a1 a2 a3

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

(10, 3)

𝜇1 𝜎1
2

𝜇 𝜎2

a'1 a'2 a'3

X’ =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

• Each item is updated with its normalized value, which will turn it 
into a normal distribution with 0 mean and variance of 1.

• The two parameters gamma and beta are learnable 
parameters that allow the model to “amplify” the scale of each 
feature or apply a translation to the feature according to the 
needs of the loss function.

With batch normalization we 
normalize by columns (features)

With layer normalization we  
normalize by rows (data items)

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Group Normalization

https://github.com/hkproj/pytorch-stable-diffusion


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

The full code is available on GitHub!

Full code: https://github.com/hkproj/pytorch-stable-
diffusion

Special thanks to:

1. https://github.com/CompVis/stable-diffusion/
2. https://github.com/divamgupta/stable-diffusion-tensorflow
3. https://github.com/kjsman/stable-diffusion-pytorch
4. https://github.com/huggingface/diffusers/

https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/divamgupta/stable-diffusion-tensorflow
https://github.com/divamgupta/stable-diffusion-tensorflow
https://github.com/kjsman/stable-diffusion-pytorch
https://github.com/huggingface/diffusers/


Umar Jamil - https://github.com/hkproj/pytorch-stable-diffusion

Thanks for watching!
Don’t forget to subscribe for 
more amazing content on AI 
and Machine Learning!

https://github.com/hkproj/pytorch-stable-diffusion

	Slide 1: Coding Stable Diffusion form scratch in PyTorch
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Why do we model data as distributions?
	Slide 6: Learning the distribution p(x) of our data.
	Slide 7
	Slide 8: The math of diffusion models… simplified!
	Slide 9
	Slide 10
	Slide 11: U-Net
	Slide 12: How to generate new data?
	Slide 13: How to condition the reverse process?
	Slide 14: Classifier Free Guidance (Training)
	Slide 15: Classifier Free Guidance (Inference)
	Slide 16
	Slide 17
	Slide 18: Performing many steps on big images is slow
	Slide 19: Latent Diffusion Model
	Slide 20: What is an Autoencoder?
	Slide 21: What’s the problem with Autoencoders?
	Slide 22: Introducing the Variational Autoencoder
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: The full code is available on GitHub!
	Slide 29: Thanks for watching! Don’t forget to subscribe for more amazing content on AI and Machine Learning!

