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Topics and Prerequisites

Topics discussed

Latent Diffusion Models (Stable Diffusion) from scratch
in PyTorch. No other libraries used except for tokenizer.
Maths of diffusion models as defined in the DDPM
paper (simplified!)

Classifier-Free Guidance

Text-to - Image

Image - to - Image

Inpainting

Future videos

Score-based models

ODE and SDE theoretical framework for diffusion
models

Euler, Runge-Kutta and derived samplers.

Prerequisites

Basics of probability and statistics (multivariate
gaussian, conditional probability, marginal probability,
likelihood, Bayers' rule).

« | will give a non-maths intuition for most

concepts.

Basics of PyTorch and neural networks
How the attention mechanism works (watch my video
on the Transformer model).
How convolution layers work
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What is Stable Diffusion?

Stable Diffusion is a text-to-image deep learning model, based on diffusion models.

Introduced in 2022, developed by the CompViz Group at LMU Munich.
https://github.com/Stability-Al/stablediffusion

Output

Prompt
Picture of a dog with glasses ==—
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What is a generative model?

A generative model learns a probability distribution of the data set such that we can then sample from the distribution to create new
instances of data. For example, if we have many pictures of cats and we train a generative model on it, we then sample from this
distribution to create new images of cats.
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Why do we model data as distributions?

* Imagine you're a criminal, and you want to generate thousands of fake identities. Each fake identity, is made up of
variables, representing the characteristics of a person (Age, Height).

* You can ask the Statistics Department of the Government to give you statistics about the age and the height of the
population and then sample from these distributions.
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0.010 0.003

f(x)
x)

0.002
0.005

0.001

0.000
0.000
-50 0 50 100 150 200 0 200 400

Age: N(40, 30?) Height: N(120, 1002)

+ Atfirst, you may sample from each distribution independently to create a
fake identity, but that would produce unreasonable pairs of (Age, Height).

« To generate fake identities that make sense, you need the joint
distribution, otherwise you may end up with an unreasonable pair of
(Age, Height)

* We can also evaluate probabilities on one of the two variables using
conditional probability and/or by marginalizing a variable.
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Learning the distribution p(x) of our data.

* We have a data set made of up images, and we want to learn a very complex distribution that we can then use to
sample from.
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Reverse process: Neural network

Original image Pure noise

Forward process: Fixed
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The math of diffusion models... simplified!
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Reverse process p

Forward process q

Just like with a VAE, we want to learn the
parameters of the latent space

2 Background

Diffusion models [53] are latent variable models of the form py(x) = f po(X0.7) dx1.7, where
X1, ..., X7 are latents of the same dimensionality as the data xg ~ ¢(xg). The joint distribution
po(xo.7) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xr) = N (x7;0,1):
T
po(%o:1) = p(Xr) HPQ(Xt—l‘XL‘)J po(xt—1]x¢) = N(x¢—1; g (xe, ), Zo(x¢, 1)) (1)
t=1
What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior g(x1.7|Xg), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule 3y, ..., B7:

q X1: T|X0 H q Xt|xt 1 Q(Xt|Xt—1) = N(Xt; v1— tht—l:ﬁtl) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

. Po(Xo:7) ] [ Po(Xi— 1\Xf)]
E[-1 <E,|—log LEXL) | g |~ log — L (3
[—log po(x0)] < q|: 8 o) og p(xr) ; o) (3)

The forward process variances [3; can be learned by reparameterization [32] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in py(x;_1|X;), because both processes have the same functional form when
[; are small [53]. A notable property of the forward process is that it admits sampling x; at an

arbitrary timestep ¢ in closed form: using the notation a; := 1 — [3; and &y = szl as, we have

q(x¢|x0) = N (x5 vVouxo, (1 — a;)I) (4)

Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, pp.6840-6851.

Evidence Lower Bound (ELBO)
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Algorithm 1 Training

1. repeat

2: X0 v Q(X[]) We take a sample from our dataset

3: t~ ]JIlifOI'l'l'l({lj c ey T}) We generate a random number t, between 1 and T
4: €~ N(O? I) We sample some noise

5: Take gradient descent step on

— — 2
V@ ||€ — €p (\ /X0 + 1 — it €, t) { } We add noise to our image, and we train the model to learn to predict the amount of noise present in it.
6: until converged

Algorithm 2 Sampling

l: XT v _)\/'(0j I) We sample some noise
2: fort=1T,...,1do
3: z~N(0,I)ift > 1,elsez=0

_ We keep denoising the image progressively for T steps.
4: X441 = \/%_{ (xt — %eg(xt,t» + 0z
5: end for
6: return xg
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U-Net
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Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part Il 18 (pp. 234-
241). Springer International Publishing.
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How to generate new data?

Reverse process: Neural network
Original image Pure noise

Forward process: Fixed
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How to condition the reverse process?

* Since we start from noise in the reserve process, how can the model know what we want as output? How can the
model understand our prompt? This is why we need to condition the reverse process.

 If we want to condition our network, we could train a model to learn a joint distribution of the data and the
conditioning signal p(x, ¢), and then sample from this joint distribution. This, however, requires the training of a
model for each separate conditioning signal.

* Another approach, called classifier guidance, involves the training of a separate model to condition the output.

« The latest and most successful approach is called classifier-free guidance, in which, instead of training two
networks, one conditional network and an unconditional network, we train a single network and during training, with
some probability, we set the conditional signal to zero, this way the network becomes a mix of conditioned and
unconditioned network, and we can take the conditioned and unconditioned output and combine them with a
weight that indicates how much we want the network to pay attention to the conditioning signal.
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Classifier Free Guidance (Training)
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Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part lll 18 (pp. 234-
241). Springer International Publishing.
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Classifier Free Guidance (Inference)
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Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part lll 18 (pp. 234-
241). Springer International Publishing.
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Classifier Free Guidance (Combine output)

output = w * (OUtputconditioned — Outputunconditioned) + outputyyconditioned

A weight that indicates how much we want the model
to pay attention to the conditioning signal (prompt).
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CLIP (Contrastive Language—Image Pre-training)

1. Contrastive pre-training
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Performing many steps on big images is slow

Reverse process: Neural network
Original image Pure noise

Forward process: Fixed

Since the latent variables have the same dimension (size of the vector) as the original data, if we want to perform many steps to denoise
an image, that would result in a lot of steps through the Unet, which can be very slow if the matrix representing our data/latent is large.
What if we could "compress” our data before running it through the forward/reverse process (UNet)?
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Latent Diffusion Model

+ Stable Diffusion is a latent diffusion model, in which we don't learn the distribution p(x) of our data set of images, but
rather, the distribution of a latent representation of our data by using a Variational Autoencoder.

* This allows us to reduce the computation we need to perform the steps needed to generate a sample, because each
data will not be represented by a 512x512 image, but its latent representation, which is 64x64.

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach! *  Andreas Blattmann® * Dominik Lorenz! Patrick Esser® Bjorn Ommer!
'Ludwig Maximilian University of Munich & TWR, Heidelberg University, Germany Runwuy ML
https://github.com/CompVis/latent-diffusion
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hat is an Autoencoder?

* The values are random and
have no meaning

T

Code
[1.2,3.65, ...]
[1.6,6.00, ...]
[10.1,9.0, ...]
[2.5,7.0,...]
Input Reconstructed
Input
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What’s the problem with Autoencoders?

The code learned by the model makes no sense. That is, the model can just assign any vector to the inputs without the numbers in the vector representing any
pattern. The model doesn’t capture any semantic relationship between the data.

Encoder : Decoder

Input Reconstructed
Input
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Introducing the Variational Autoencoder

The variational autoencoder, instead of learning a code, learns a “latent space”. The latent space represents the parameters of a (multivariate) distribution.

Encoder - Decoder

Latent Space

Input Reconstructed
Input
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Architecture (Text-To-Image)
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Architecture (Image-To-Image)
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Architecture (In-Painting): how to fool models

A dog running
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Layer Normalization

2 f U o2
2
ltem 1 | °1 8 9 H 91 [tem 1
[tem 2 [tem 2
ltem 3 [tem 3
X = X' =
(10, 3)
ltem 10 [tem 10

z — E[z]

. \/ Var[z| + €

* Each item is updated with its normalized value, which will turn it
into a normal distribution with 0 mean and variance of 1.

* The two parameters gamma and beta are learnable
parameters that allow the model to “amplify” the scale of each
feature or apply a translation to the feature according to the
needs of the loss function.

With batch normalization we
normalize by columns (features)

With layer normalization we
normalize by rows (data items)
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Group Normalization
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The full code is available on GitHub!

Full code: https://github.com/hkproj/pytorch-stable-
diffusion

Special thanks to:

https://github.com/CompVis/stable-diffusion/
https://github.com/divamgupta/stable-diffusion-tensorflow
https://github.com/kjsman/stable-diffusion-pytorch
https://github.com/huggingface/diffusers/

PN =
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https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/hkproj/pytorch-stable-diffusion
https://github.com/divamgupta/stable-diffusion-tensorflow
https://github.com/divamgupta/stable-diffusion-tensorflow
https://github.com/kjsman/stable-diffusion-pytorch
https://github.com/huggingface/diffusers/

Thanks for watching!

Don’t forget to subscribe for
more amazing content on Al
and Machine Learning!

Umar Jamil - https ://github.com/hkproj/pytorch -stable-diffusion



https://github.com/hkproj/pytorch-stable-diffusion

	Slide 1: Coding Stable Diffusion form scratch in PyTorch
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Why do we model data as distributions?
	Slide 6: Learning the distribution p(x) of our data.
	Slide 7
	Slide 8: The math of diffusion models… simplified!
	Slide 9
	Slide 10
	Slide 11: U-Net
	Slide 12: How to generate new data?
	Slide 13: How to condition the reverse process?
	Slide 14: Classifier Free Guidance (Training)
	Slide 15: Classifier Free Guidance (Inference)
	Slide 16
	Slide 17
	Slide 18: Performing many steps on big images is slow
	Slide 19: Latent Diffusion Model
	Slide 20: What is an Autoencoder?
	Slide 21: What’s the problem with Autoencoders?
	Slide 22: Introducing the Variational Autoencoder
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: The full code is available on GitHub!
	Slide 29: Thanks for watching! Don’t forget to subscribe for more amazing content on AI and Machine Learning!

