--- license: apache-2.0 datasets: - HuggingFaceTB/smollm-corpus language: - en library_name: transformers pipeline_tag: text2text-generation tags: - fineweb - t5 --- # tFINE-base-300m An encoder-decoder (T5 architecture) pretrained with [nanoT5](https://github.com/pszemraj/nanoT5/tree/flan-dataset): - tokenizer: sentencepiece BPE w/ byte fallback, 48k vocab (from [vocab scaling laws](https://hf.co/collections/sail/scaling-laws-with-vocabulary-6699e0cbd77a8b2870859bfe)) - data: `fineweb-edu-dedup` split of `HuggingFaceTB/smollm-corpus` - context length: 1024 ctx ## details Detailed info, including training logs, configs, and checkpoints can be found under `checkpoints/` in this repo.
Expand hyperparameter overview 1. Model: - Dropout rate: 0.0 - Activations: `silu`, `gated-silu` - torch compile: true 2. Data processing: - Input length: 1024 - MLM probability: 0.15 3. Optimization: - Optimizer: AdamW with scaling - Base learning rate: 0.008 - Batch size: 120 - Total training steps: 80,000 - Warmup steps: 10,000 - Learning rate scheduler: Cosine - Weight decay: 0.0001 - Gradient clipping: 1.0 - Gradient accumulation steps: 24 - Final cosine learning rate: 1e-5 4. Hardware: - Device: RTX 4080 - Precision: bfloat16, tf32
## plots training loss ![loss](./checkpoints/loss_over_steps.png)
Expand grad and weights L2 norm plots grad norm ![grad](./checkpoints/grad_l2_over_steps.png) weights norm ![weights](./checkpoints/weights_l2_over_steps.png)
---