update model cards
Browse files- README.md +56 -33
- doc/badges/badge-colab.svg +0 -33
- doc/badges/badge-docker.svg +0 -29
- doc/badges/badge-license.svg +0 -27
- doc/badges/badge-pdf.svg +0 -27
- doc/badges/badge-website.svg +0 -129
- doc/teaser_collage_transparant.png +0 -3
README.md
CHANGED
@@ -4,39 +4,70 @@ language:
|
|
4 |
- en
|
5 |
pipeline_tag: normals-estimation
|
6 |
tags:
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
|
|
10 |
- in-the-wild
|
11 |
- zero-shot
|
12 |
-
- LCM
|
13 |
---
|
14 |
-
# Marigold Normals (LCM) Model Card
|
15 |
|
16 |
-
|
17 |
-
The Marigold Normals model focuses on the surface normals task.
|
18 |
-
It takes an input image and computes surface normals in each pixel.
|
19 |
-
The LCM stands for Latent Consistency Models, which is a technique for making the diffusion model fast.
|
20 |
-
The Marigold Normals model is trained from Stable Diffusion with synthetic data, and the LCM model is further fine-tuned from it.
|
21 |
-
Thanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks.
|
22 |
-
Read more about Marigold in our paper titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation".
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
[Nando Metzger](https://nandometzger.github.io/),
|
34 |
-
[Rodrigo Caye Daudt](https://rcdaudt.github.io/),
|
35 |
-
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en)
|
36 |
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
```bibtex
|
42 |
@InProceedings{ke2023repurposing,
|
@@ -46,11 +77,3 @@ Developed by:
|
|
46 |
year={2024}
|
47 |
}
|
48 |
```
|
49 |
-
|
50 |
-
## 🎫 License
|
51 |
-
|
52 |
-
This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)).
|
53 |
-
|
54 |
-
By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE.txt).
|
55 |
-
|
56 |
-
[](https://www.apache.org/licenses/LICENSE-2.0)
|
|
|
4 |
- en
|
5 |
pipeline_tag: normals-estimation
|
6 |
tags:
|
7 |
+
- normals estimation
|
8 |
+
- latent consistency model
|
9 |
+
- image analysis
|
10 |
+
- computer vision
|
11 |
- in-the-wild
|
12 |
- zero-shot
|
|
|
13 |
---
|
|
|
14 |
|
15 |
+
<h1 align="center">Marigold Normals LCM v0-1 Model Card</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
<p align="center">
|
18 |
+
<a title="Image Normals" href="https://huggingface.co/spaces/prs-eth/marigold-normals" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
19 |
+
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Image%20Normals%20-Demo-yellow" alt="Image Normals">
|
20 |
+
</a>
|
21 |
+
<a title="diffusers" href="https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
22 |
+
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20diffusers%20-Integration%20🧨-yellow" alt="diffusers">
|
23 |
+
</a>
|
24 |
+
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
25 |
+
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="Github">
|
26 |
+
</a>
|
27 |
+
<a title="Website" href="https://marigoldcomputervision.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
28 |
+
<img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue" alt="Website">
|
29 |
+
</a>
|
30 |
+
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
31 |
+
<img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436" alt="arXiv">
|
32 |
+
</a>
|
33 |
+
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
34 |
+
<img src="https://img.shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" alt="Social">
|
35 |
+
</a>
|
36 |
+
<a title="License" href="https://www.apache.org/licenses/LICENSE-2.0" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
37 |
+
<img src="https://img.shields.io/badge/License-Apache--2.0-929292" alt="License">
|
38 |
+
</a>
|
39 |
+
</p>
|
40 |
|
41 |
+
<h2 align="center"><span style="color: red;"><b>This model is deprecated. Use the new Marigold Normals v1-1 Model instead.</b></span></h2>
|
42 |
+
<h2 align="center">
|
43 |
+
<a href="https://huggingface.co/prs-eth/marigold-normals-v1-1">NEW: Marigold Normals v1-1 Model</a>
|
44 |
+
</h2>
|
|
|
|
|
|
|
45 |
|
46 |
+
This is a model card for the `marigold-normals-lcm-v0-1` model for monocular normals estimation from a single image.
|
47 |
+
The model is fine-tuned from the `marigold-normals-v0-1` [model](https://huggingface.co/prs-eth/marigold-normals-v0-1)
|
48 |
+
using the latent consistency distillation method, as described in
|
49 |
+
<span style="color:red;">a follow-up of our [CVPR'2024 paper](https://arxiv.org/abs/2312.02145) titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation".</span>
|
50 |
|
51 |
+
- Play with the interactive [Hugging Face Spaces demo](https://huggingface.co/spaces/prs-eth/marigold-normals): check out how the model works with example images or upload your own.
|
52 |
+
- Use it with [diffusers](https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage) to compute the results with a few lines of code.
|
53 |
+
- Get to the bottom of things with our [official codebase](https://github.com/prs-eth/marigold).
|
54 |
+
|
55 |
+
## Model Details
|
56 |
+
- **Developed by:** [Bingxin Ke](http://www.kebingxin.com/), [Kevin Qu](https://ch.linkedin.com/in/kevin-qu-b3417621b), [Tianfu Wang](https://tianfwang.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Shengyu Huang](https://shengyuh.github.io/), [Bo Li](https://www.linkedin.com/in/bobboli0202), [Anton Obukhov](https://www.obukhov.ai/), [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ).
|
57 |
+
- **Model type:** Generative latent diffusion-based normals estimation from a single image.
|
58 |
+
- **Language:** English.
|
59 |
+
- **License:** [Apache License License Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
60 |
+
- **Model Description:** This model can be used to generate an estimated surface normals map of an input image.
|
61 |
+
- **Resolution**: Even though any resolution can be processed, the model inherits the base diffusion model's effective resolution of roughly **768** pixels.
|
62 |
+
This means that for optimal predictions, any larger input image should be resized to make the longer side 768 pixels before feeding it into the model.
|
63 |
+
- **Steps and scheduler**: This model was designed for usage with the **LCM** scheduler and between **1 and 4** denoising steps.
|
64 |
+
- **Outputs**:
|
65 |
+
- **Surface normals map**: The predicted values are 3-dimensional unit vectors in the screen space camera.
|
66 |
+
- **Uncertainty map**: Produced only when multiple predictions are ensembled with ensemble size larger than 2.
|
67 |
+
- **Resources for more information:** [Project Website](https://marigoldcomputervision.github.io/), [Paper](https://arxiv.org/abs/2312.02145), [Code](https://github.com/prs-eth/marigold).
|
68 |
+
- **Cite as:**
|
69 |
+
|
70 |
+
<span style="color:red;">Placeholder for the citation block of the follow-up paper</span>
|
71 |
|
72 |
```bibtex
|
73 |
@InProceedings{ke2023repurposing,
|
|
|
77 |
year={2024}
|
78 |
}
|
79 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
doc/badges/badge-colab.svg
DELETED
doc/badges/badge-docker.svg
DELETED
doc/badges/badge-license.svg
DELETED
doc/badges/badge-pdf.svg
DELETED
doc/badges/badge-website.svg
DELETED
doc/teaser_collage_transparant.png
DELETED
Git LFS Details
|