File size: 5,832 Bytes
700480e 0059bc1 700480e 6d4ded1 700480e 0059bc1 700480e 6d4ded1 700480e 6d4ded1 28214f0 6d4ded1 d160c44 6d4ded1 700480e 6d4ded1 700480e 6d4ded1 3cd0299 28214f0 3cd0299 6d4ded1 d160c44 6d4ded1 700480e 3cd0299 700480e 3cd0299 700480e 0059bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- en
license: apache-2.0
pipeline_tag: image-to-image
library_name: diffusers
tags:
- normals estimation
- latent consistency model
- image analysis
- computer vision
- in-the-wild
- zero-shot
new_version: prs-eth/marigold-normals-v1-1
---
<h1 align="center">Marigold Normals LCM v0-1 Model Card</h1>
<p align="center">
<a title="Image Normals" href="https://huggingface.co/spaces/prs-eth/marigold-normals" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Image%20Normals%20-Demo-yellow" alt="Image Normals">
</a>
<a title="diffusers" href="https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20diffusers%20-Integration%20🧨-yellow" alt="diffusers">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="Github">
</a>
<a title="Website" href="https://marigoldcomputervision.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue" alt="Website">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2505.09358" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436" alt="arXiv">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" alt="Social">
</a>
<a title="License" href="https://www.apache.org/licenses/LICENSE-2.0" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/License-Apache--2.0-929292" alt="License">
</a>
</p>
<h2 align="center"><span style="color: red;"><b>This model is deprecated. Use the new Marigold Normals v1-1 Model instead.</b></span></h2>
<h2 align="center">
<a href="https://huggingface.co/prs-eth/marigold-normals-v1-1">NEW: Marigold Normals v1-1 Model</a>
</h2>
This is a model card for the `marigold-normals-lcm-v0-1` model for monocular normals estimation from a single image.
The model is fine-tuned from the `marigold-normals-v0-1` [model](https://huggingface.co/prs-eth/marigold-normals-v0-1)
using the latent consistency distillation method, as
described in our papers:
- [CVPR'2024 paper](https://hf.co/papers/2312.02145) titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"
- [Journal extension](https://hf.co/papers/2505.09358) titled "Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis"
### Using the model
- Play with the interactive [Hugging Face Spaces demo](https://huggingface.co/spaces/prs-eth/marigold-normals): check out how the model works with example images or upload your own.
- Use it with [diffusers](https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage) to compute the results with a few lines of code.
- Get to the bottom of things with our [official codebase](https://github.com/prs-eth/marigold).
## Model Details
- **Developed by:** [Bingxin Ke](http://www.kebingxin.com/), [Kevin Qu](https://ch.linkedin.com/in/kevin-qu-b3417621b), [Tianfu Wang](https://tianfwang.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Shengyu Huang](https://shengyuh.github.io/), [Bo Li](https://www.linkedin.com/in/bobboli0202), [Anton Obukhov](https://www.obukhov.ai/), [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ).
- **Model type:** Generative latent diffusion-based normals estimation from a single image.
- **Language:** English.
- **License:** [Apache License License Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
- **Model Description:** This model can be used to generate an estimated surface normals map of an input image.
- **Resolution**: Even though any resolution can be processed, the model inherits the base diffusion model's effective resolution of roughly **768** pixels.
This means that for optimal predictions, any larger input image should be resized to make the longer side 768 pixels before feeding it into the model.
- **Steps and scheduler**: This model was designed for usage with the **LCM** scheduler and between **1 and 4** denoising steps.
- **Outputs**:
- **Surface normals map**: The predicted values are 3-dimensional unit vectors in the screen space camera.
- **Uncertainty map**: Produced only when multiple predictions are ensembled with ensemble size larger than 2.
- **Resources for more information:** [Project Website](https://marigoldcomputervision.github.io/), [Paper](https://arxiv.org/abs/2505.09358), [Code](https://github.com/prs-eth/marigold).
- **Cite as:**
```bibtex
@misc{ke2025marigold,
title={Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis},
author={Bingxin Ke and Kevin Qu and Tianfu Wang and Nando Metzger and Shengyu Huang and Bo Li and Anton Obukhov and Konrad Schindler},
year={2025},
eprint={2505.09358},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{ke2023repurposing,
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
``` |