save_data: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/models ## Where the vocab(s) will be written src_vocab: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/models/run/bpe.vocab.src tgt_vocab: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/models/run/bpe.vocab.tgt overwrite: True # Corpus opts: data: # en-es: # path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-es/train.en10k.txt # path_tgt: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-es/train.es10k.txt #transforms: [bpe, filtertoolong] #weight: 100 # en-pt: # path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-pt/train.en10k.txt # path_tgt: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-pt/train.pt10k.txt # weight: 5 pt-gl: path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/train.pt35k.txt path_tgt: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/train.gl35k.txt transforms: [bpe, filtertoolong] # en-it: # path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-it/train.en10k.txt # path_tgt: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-it/train.it10k.txt # en-ro: # path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-ro/train.en10k.txt # path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/nmt-pld/en-ro/train.ro10k.txt valid: path_src: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/valid.pt35k.txt path_tgt: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/valid.gl35k.txt transforms: [bpe, filtertoolong] ### Transform related opts: #### Subword src_subword_model: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/pt_35k.code tgt_subword_model: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/gl_35k.code #src_subword_vocab: /home/compartido/paulo/modelos/run/bpe.vocab.src #tgt_subword_vocab: /home/compartido/paulo/modelos/run/bpe.vocab.tgt #src_subword_model: ../sentencepiece/en-gl/en.sp.model #tgt_subword_model: ../sentencepiece/en-gl/gl.sp.model src_subword_type: bpe tgt_subord_type: bpe src_subword_nbest: 1 src_subword_alpha: 0.0 tgt_subword_nbest: 1 tgt_subword_alpha: 0.0 #### Filter src_seq_length: 150 tgt_seq_length: 150 # silently ignore empty lines in the data skip_empty_level: silent ##embeddings #src_embeddings: /mnt/lustre/scratch/nlsas//home/usc/ci/pgo/modelos/embeddings/en.emb.txt #tgt_embeddings: /mnt/lustre/scratch/nlsas//home/usc/ci/pgo/modelos/embeddings/gl.emb.txt src_embeddings: /mnt/netapp1/Proxecto_NOS/mt/treino_data/embeddings/pt.emb.txt tgt_embeddings: /mnt/netapp1/Proxecto_NOS/mt/treino_data/embeddings/gl.emb.txt ## supported types: GloVe, word2vec embeddings_type: "word2vec" # word_vec_size need to match with the pretrained embeddings dimensions #word_vec_size: 300 # General opts save_model: /mnt/netapp1/Proxecto_NOS/mt/corpus/iacobus/pt-gl/aut/models/ keep_checkpoint: 50 save_checkpoint_steps: 10000 average_decay: 0.0005 seed: 1234 report_every: 1000 train_steps: 400000 valid_steps: 10000 # Batching queue_size: 10000 bucket_size: 32768 world_size: 1 gpu_ranks: [0] batch_type: "tokens" batch_size: 4096 valid_batch_size: 64 batch_size_multiple: 1 max_generator_batches: 2 accum_count: [4] accum_steps: [0] # Optimization model_dtype: "fp16" optim: "adam" learning_rate: 2 warmup_steps: 8000 decay_method: "noam" adam_beta2: 0.998 max_grad_norm: 0 label_smoothing: 0.1 param_init: 0 param_init_glorot: true normalization: "tokens" # Model encoder_type: transformer decoder_type: transformer position_encoding: true max_len: 6000 #max_relative_positions: 20 enc_layers: 12 dec_layers: 12 heads: 16 #rnn_size: 512 hidden_size: 512 word_vec_size: 512 transformer_ff: 2048 dropout_steps: [0] dropout: [0.1] attention_dropout: [0.1] share_decoder_embeddings: true share_embeddings: false