File size: 8,046 Bytes
255e848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

import torch
import torch.nn as nn
import math
from transformers import PreTrainedModel, PreTrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions

class NanoGPTCompressedConfig(PreTrainedConfig):
    model_type = "nanogpt_compressed"
    
    def __init__(
        self,
        vocab_size=6060,
        block_size=1024,
        n_layer=8,
        n_head=8,
        n_embd=512,
        dropout=0.0,
        bias=True,
        compression_method="fixed_low_rank_mlp",
        compression_rank=128,
        compressed_layers=[1],
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.block_size = block_size
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_embd = n_embd
        self.dropout = dropout
        self.bias = bias
        self.compression_method = compression_method
        self.compression_rank = compression_rank
        self.compressed_layers = compressed_layers
        super().__init__(**kwargs)

class LowRankLinear(nn.Module):
    def __init__(self, input_dim, output_dim, rank=16, bias=True):
        super().__init__()
        self.rank = rank
        self.input_dim = input_dim
        self.output_dim = output_dim
        
        self.U = nn.Parameter(torch.randn(input_dim, rank) * 0.02)
        self.V = nn.Parameter(torch.randn(rank, output_dim) * 0.02)
        
        if bias:
            self.bias = nn.Parameter(torch.zeros(output_dim))
        else:
            self.register_parameter('bias', None)
        
    def forward(self, x):
        result = (x @ self.U) @ self.V
        if self.bias is not None:
            result = result + self.bias
        return result

class LayerNorm(nn.Module):
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                    .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v  = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        att = self.attn_dropout(att)
        y = att @ v
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

class MLP(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        self.layer_idx = layer_idx
        
        # Check if this layer should be compressed
        if (hasattr(config, 'compressed_layers') and 
            layer_idx is not None and 
            layer_idx in config.compressed_layers):
            
            print(f"Creating compressed MLP for layer {layer_idx}")
            rank = getattr(config, 'compression_rank', 128)
            self.c_fc = LowRankLinear(config.n_embd, 4 * config.n_embd, rank, bias=config.bias)
            self.c_proj = LowRankLinear(4 * config.n_embd, config.n_embd, rank, bias=config.bias)
        else:
            self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
            self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
            
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = F.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):
    def __init__(self, config, layer_idx=None):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config, layer_idx=layer_idx)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class NanoGPTCompressedModel(PreTrainedModel):
    config_class = NanoGPTCompressedConfig

    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config, layer_idx=i) for i in range(config.n_layer)]),
            ln_f = LayerNorm(config.n_embd, bias=config.bias),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        
        # Share weights
        self.transformer.wte.weight = self.lm_head.weight

        # Initialize weights
        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight') or pn.endswith('c_proj.V'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device)

        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)

        if targets is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            logits = self.lm_head(x[:, [-1], :])
            loss = None

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=logits,
            past_key_values=None,
            hidden_states=None,
            attentions=None,
            cross_attentions=None,
        )

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits = self(idx_cond).logits
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx