--- license: apache-2.0 datasets: - strangerguardhf/NSFW-MultiDomain-Classification-v2.0 language: - en base_model: - google/vit-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - explicit-content-detection - mini - art - sensual-content-detection - Anime --- ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rhxwuZq4nbQhPBGDVPc_v.png) # **vit-mini-explicit-content** > **vit-mini-explicit-content** is an image classification vision-language model fine-tuned from **vit-base-patch16-224-in21k** for a single-label classification task. It categorizes images based on their explicitness using the **ViTForImageClassification** architecture. > \[!Note] > This model is designed to promote safe, respectful, and responsible online spaces. It does **not** generate explicit content; it only classifies images. Misuse may violate platform or regional policies and is strongly discouraged. > [!Note] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale : https://arxiv.org/abs/2010.11929, Visual Transformers: Token-based Image Representation and Processing for Computer Vision: https://arxiv.org/pdf/2006.03677 > [!Important] Note: Explicit, sensual, and pornographic content may appear in the results; however, all of them are considered not safe for work. ```py Classification Report: precision recall f1-score support Anime Picture 0.9077 0.7937 0.8469 5600 Extincing & Sensual 0.9245 0.9717 0.9475 5618 Hentai 0.8680 0.9391 0.9021 5600 Pornography 0.9614 0.9544 0.9579 5970 Safe for Work 0.9235 0.9235 0.9235 6000 accuracy 0.9171 28788 macro avg 0.9170 0.9165 0.9156 28788 weighted avg 0.9177 0.9171 0.9163 28788 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/VaSWP4-JjXrczImMGufQE.png) --- The model categorizes images into five classes: * **Class 0:** Anime Picture * **Class 1:** Enticing & Sensual * **Class 2:** Hentai * **Class 3:** Pornography * **Class 4:** Safe for Work # **Run with Transformers** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import ViTImageProcessor, ViTForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/vit-mini-explicit-content" # Updated model path model = ViTForImageClassification.from_pretrained(model_name) processor = ViTImageProcessor.from_pretrained(model_name) # Updated label mapping labels = { "0": "Anime Picture", "1": "Enticing & Sensual", "2": "Hentai", "3": "Pornography", "4": "Safe for Work" } def explicit_content_detection(image): """Predicts the type of content in the image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=explicit_content_detection, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="vit-mini-explicit-content", description="Upload an image to classify whether it is anime, enticing & sensual, hentai, pornographic, or safe for work." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- ## Demo Inference > [!warning] Anime Picture ![Screenshot 2025-05-19 at 22-30-24 vit-mini-explicit-content.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/nzHUSO_YN-t2yOMEDT37B.png) > [!warning] Extincing & Sensual ![Screenshot 2025-05-19 at 22-30-56 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/78om_bUqjyjyLrrUkWPc2.png) ![Screenshot 2025-05-19 at 22-31-48 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Y6haGPcaoaOj_uM8MX0E7.png) > [!warning] Hentai ![Screenshot 2025-05-19 at 22-32-42 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/A48Ow5GllARvz66ZL08Tn.png) > [!warning] Pornography ![Screenshot 2025-05-19 at 22-37-31 vit-mini-explicit-content(1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/W0CPq8cPb79fpNEqVLIU_.png) > [!warning] Safe for Work ![Screenshot 2025-05-19 at 22-27-20 vit-mini-explicit-content.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/R3hnvsYOFh9wA4Y60REKu.png) --- # **Recommended Use Cases** * Image moderation pipelines * Parental and institutional content filters * Dataset cleansing before training * Online safety and well-being platforms * Enhancing search engine filtering # **Discouraged / Prohibited Use** * Non-consensual or malicious monitoring * Automated judgments without human review * Misrepresentation of moderation systems * Use in unlawful or unethical surveillance * Harassment, exploitation, or shaming