Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,31 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- prithivMLmods/Shoe-Net-10K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
```py
|
8 |
Classification Report:
|
9 |
precision recall f1-score support
|
@@ -20,3 +43,87 @@ weighted avg 0.9202 0.9197 0.9194 10000
|
|
20 |
```
|
21 |
|
22 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- prithivMLmods/Shoe-Net-10K
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-512
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- SigLIP2
|
13 |
+
- Ballet Flat
|
14 |
+
- Boat
|
15 |
+
- Sneaker
|
16 |
+
- Clog
|
17 |
+
- Brogue
|
18 |
---
|
19 |
|
20 |
+

|
21 |
+
|
22 |
+
# shoe-type-detection
|
23 |
+
|
24 |
+
> shoe-type-detection is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **multi-class image classification**. It is trained to detect different types of shoes such as **Ballet Flats**, **Boat Shoes**, **Brogues**, **Clogs**, and **Sneakers**. The model uses the `SiglipForImageClassification` architecture.
|
25 |
+
|
26 |
+
> \[!note]
|
27 |
+
> SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
|
28 |
+
> [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786)
|
29 |
+
|
30 |
```py
|
31 |
Classification Report:
|
32 |
precision recall f1-score support
|
|
|
43 |
```
|
44 |
|
45 |

|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
## Label Space: 5 Classes
|
50 |
+
|
51 |
+
```
|
52 |
+
Class 0: Ballet Flat
|
53 |
+
Class 1: Boat
|
54 |
+
Class 2: Brogue
|
55 |
+
Class 3: Clog
|
56 |
+
Class 4: Sneaker
|
57 |
+
```
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## Install Dependencies
|
62 |
+
|
63 |
+
```bash
|
64 |
+
pip install -q transformers torch pillow gradio hf_xet
|
65 |
+
```
|
66 |
+
|
67 |
+
---
|
68 |
+
|
69 |
+
## Inference Code
|
70 |
+
|
71 |
+
```python
|
72 |
+
import gradio as gr
|
73 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
74 |
+
from PIL import Image
|
75 |
+
import torch
|
76 |
+
|
77 |
+
# Load model and processor
|
78 |
+
model_name = "prithivMLmods/shoe-type-detection" # Update with actual model name on Hugging Face
|
79 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
80 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
81 |
+
|
82 |
+
# Updated label mapping
|
83 |
+
id2label = {
|
84 |
+
"0": "Ballet Flat",
|
85 |
+
"1": "Boat",
|
86 |
+
"2": "Brogue",
|
87 |
+
"3": "Clog",
|
88 |
+
"4": "Sneaker"
|
89 |
+
}
|
90 |
+
|
91 |
+
def classify_image(image):
|
92 |
+
image = Image.fromarray(image).convert("RGB")
|
93 |
+
inputs = processor(images=image, return_tensors="pt")
|
94 |
+
|
95 |
+
with torch.no_grad():
|
96 |
+
outputs = model(**inputs)
|
97 |
+
logits = outputs.logits
|
98 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
99 |
+
|
100 |
+
prediction = {
|
101 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
102 |
+
}
|
103 |
+
|
104 |
+
return prediction
|
105 |
+
|
106 |
+
# Gradio Interface
|
107 |
+
iface = gr.Interface(
|
108 |
+
fn=classify_image,
|
109 |
+
inputs=gr.Image(type="numpy"),
|
110 |
+
outputs=gr.Label(num_top_classes=5, label="Shoe Type Classification"),
|
111 |
+
title="Shoe Type Detection",
|
112 |
+
description="Upload an image of a shoe to classify it as Ballet Flat, Boat, Brogue, Clog, or Sneaker."
|
113 |
+
)
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
iface.launch()
|
117 |
+
```
|
118 |
+
|
119 |
+
---
|
120 |
+
|
121 |
+
## Intended Use
|
122 |
+
|
123 |
+
`shoe-type-detection` is designed for:
|
124 |
+
|
125 |
+
* **E-Commerce Automation** – Automate product tagging and classification in online retail platforms.
|
126 |
+
* **Footwear Inventory Management** – Efficiently organize and categorize large volumes of shoe images.
|
127 |
+
* **Retail Intelligence** – Enable AI-powered search and filtering based on shoe types.
|
128 |
+
* **Smart Surveillance** – Identify and analyze footwear types in surveillance footage for retail analytics.
|
129 |
+
* **Fashion and Apparel Research** – Analyze trends in shoe types and customer preferences using image datasets.
|