--- license: apache-2.0 datasets: - prithivMLmods/OpenDeepfake-Preview language: - en base_model: - google/siglip2-base-patch16-512 pipeline_tag: image-classification library_name: transformers tags: - deepfake - detection - SigLIP2 - art - synthetic --- ![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_04t9LUTuMdTlMqHAONno.png) # open-deepfake-detection > open-deepfake-detection is a vision-language encoder model fine-tuned from `siglip2-base-patch16-512` for binary image classification. It is trained to detect whether an image is fake or real using the *OpenDeepfake-Preview* dataset. The model uses the `SiglipForImageClassification` architecture. > \[!note] > *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* > [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786) > \[!important] Experimental Model ```py Classification Report: precision recall f1-score support Fake 0.9718 0.9155 0.9428 10000 Real 0.9201 0.9734 0.9460 9999 accuracy 0.9444 19999 macro avg 0.9459 0.9444 0.9444 19999 weighted avg 0.9459 0.9444 0.9444 19999 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KIQGQnaSxrY1F2TQNpRLR.png) --- ## Label Space: 2 Classes The model classifies an image as either: ``` Class 0: Fake Class 1: Real ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/open-deepfake-detection" # Updated model name model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Updated label mapping id2label = { "0": "Fake", "1": "Real" } def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Deepfake Detection"), title="open-deepfake-detection", description="Upload an image to detect whether it is AI-generated (Fake) or a real photograph (Real), using the OpenDeepfake-Preview dataset." ) if __name__ == "__main__": iface.launch() ``` --- ## Demo Inference > [!warning] real ![Screenshot 2025-05-20 at 14-01-01 Deepfake Detection Model.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/0HPpoJmqIhHMqPo80ZIdc.png) ![Screenshot 2025-05-20 at 14-01-41 Deepfake Detection Model.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fHB6TCDTHFI5wI7OBNOPZ.png) > [!warning] fake ![Screenshot 2025-05-20 at 14-04-22 Deepfake Detection Model.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wNS6sFeGKroHlPvMyDqJe.png) ![Screenshot 2025-05-20 at 14-08-07 Deepfake Detection Model.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/sKKph7D8MLLhnfjtatnrw.png) ## Intended Use `open-deepfake-detection` is designed for: * **Deepfake Detection** – Identify AI-generated or manipulated images. * **Content Moderation** – Flag synthetic or fake visual content. * **Dataset Curation** – Remove synthetic samples from mixed datasets. * **Visual Authenticity Verification** – Check the integrity of visual media. * **Digital Forensics** – Support image source verification and traceability.