prithivMLmods commited on
Commit
7de800b
Β·
verified Β·
1 Parent(s): 1b4b06f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +216 -3
README.md CHANGED
@@ -1,3 +1,216 @@
1
- ---
2
- license: creativeml-openrail-m
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - triangulum_5b
15
+ - sft
16
+ - chain_of_thought
17
+ - ollama
18
+ - text-generation-inference
19
+ - llama_for_causal_lm
20
+ library_name: transformers
21
+ ---
22
+ ![Triangulum-5b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png)
23
+
24
+ <pre align="center">
25
+ __ .__ .__
26
+ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____
27
+ \ __\\_ __ \| |\__ \ / \ / ___\ | | \| | | | \ / \
28
+ | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
29
+ |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
30
+ \/ \//_____/ \/
31
+ </pre>
32
+
33
+ # **Triangulum 5B GGUF: Multilingual Large Language Models (LLMs)**
34
+
35
+ Triangulum 5B is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
36
+
37
+ # **Key Features**
38
+
39
+ - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.
40
+
41
+ - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.
42
+
43
+ - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts.
44
+
45
+ # **Training Approach**
46
+
47
+ 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
48
+ 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
49
+ 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.
50
+
51
+ # **How to use with transformers**
52
+
53
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
54
+
55
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
56
+
57
+ ```python
58
+ import torch
59
+ from transformers import pipeline
60
+
61
+ model_id = "prithivMLmods/Triangulum-5B"
62
+ pipe = pipeline(
63
+ "text-generation",
64
+ model=model_id,
65
+ torch_dtype=torch.bfloat16,
66
+ device_map="auto",
67
+ )
68
+ messages = [
69
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
70
+ {"role": "user", "content": "Who are you?"},
71
+ ]
72
+ outputs = pipe(
73
+ messages,
74
+ max_new_tokens=256,
75
+ )
76
+ print(outputs[0]["generated_text"][-1])
77
+ ```
78
+ # **Demo Inference LlamaForCausalLM**
79
+ ```python
80
+ import torch
81
+ from transformers import AutoTokenizer, LlamaForCausalLM
82
+
83
+ # Load tokenizer and model
84
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-5B', trust_remote_code=True)
85
+ model = LlamaForCausalLM.from_pretrained(
86
+ "prithivMLmods/Triangulum-5B",
87
+ torch_dtype=torch.float16,
88
+ device_map="auto",
89
+ load_in_8bit=False,
90
+ load_in_4bit=True,
91
+ use_flash_attention_2=True
92
+ )
93
+
94
+ # Define a list of system and user prompts
95
+ prompts = [
96
+ """<|im_start|>system
97
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
98
+ <|im_start|>user
99
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
100
+ <|im_start|>assistant"""
101
+ ]
102
+
103
+ # Generate responses for each prompt
104
+ for chat in prompts:
105
+ print(f"Prompt:\n{chat}\n")
106
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
107
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
108
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
109
+ print(f"Response:\n{response}\n{'-'*80}\n")
110
+ ```
111
+
112
+ # **Key Adjustments**
113
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
114
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
115
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
116
+
117
+ You can expand the list of prompts to explore a variety of scenarios and responses.
118
+
119
+ # **Use Cases for T5B**
120
+
121
+ - Multilingual content generation
122
+ - Question answering and dialogue systems
123
+ - Text summarization and analysis
124
+ - Translation and localization tasks
125
+
126
+ # **Technical Details**
127
+
128
+ Triangulum 10B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.
129
+
130
+ # **How to Run Triangulum 5B on Ollama Locally**
131
+
132
+ ```markdown
133
+ # How to Run Ollama Locally
134
+
135
+ This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.
136
+
137
+ ---
138
+
139
+ ## Example 1: How to Run the Triangulum-5B Model
140
+
141
+ The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.
142
+
143
+ ### Step 1: Download the Model
144
+
145
+ First, download the **Triangulum-5B-F16.gguf** model using the following command:
146
+
147
+ ```bash
148
+ ollama run triangulum-5b-f16.gguf
149
+ ```
150
+
151
+ ### Step 2: Model Initialization and Download
152
+
153
+ Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:
154
+
155
+ ```plaintext
156
+ pulling manifest
157
+ pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
158
+ pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
159
+ pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
160
+ pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 59 B
161
+ pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 91 B
162
+ pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 557 B
163
+ verifying sha256 digest
164
+ writing manifest
165
+ removing any unused layers
166
+ success
167
+ >>> Send a message (/? for help)
168
+ ```
169
+
170
+ ### Step 3: Interact with the Model
171
+
172
+ Once the model is ready, you can send a prompt. For example, let's ask:
173
+
174
+ ```plaintext
175
+ >>> What can you do for me?
176
+ ```
177
+
178
+ If you asked the same question, you should receive a response like this:
179
+
180
+ ```plaintext
181
+ As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:
182
+
183
+ 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
184
+ 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
185
+ 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
186
+ 4. Translation: I can translate text from one language to another.
187
+ 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
188
+ 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
189
+ 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
190
+ 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.
191
+
192
+ Please let me know if there is anything specific you would like me to help you with.
193
+ ```
194
+
195
+ ### Step 4: Exit the Program
196
+
197
+ To exit the program, simply type:
198
+
199
+ ```plaintext
200
+ /exit
201
+ ```
202
+
203
+ ## Example 2: Running Multi-Modal Models (Future Use)
204
+
205
+ Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.
206
+
207
+ ## Notes on Using Quantized Models
208
+
209
+ Quantized models like **triangulum-5b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.
210
+
211
+ 1. Ensure your system has sufficient VRAM or CPU resources.
212
+ 2. Use the `.gguf` model format for compatibility with Ollama.
213
+
214
+ # **Conclusion**
215
+
216
+ Running the **Triangulum-5B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.