prithivMLmods commited on
Commit
5591726
·
verified ·
1 Parent(s): e178a34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md CHANGED
@@ -1,6 +1,22 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
4
  ```py
5
  Classification Report:
6
  precision recall f1-score support
@@ -16,3 +32,68 @@ medium-traffic 0.7785 0.6453 0.7057 1187
16
  ```
17
 
18
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xatFDNCVZo5jGHW8njTmz.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - google/siglip2-base-patch16-224
7
+ pipeline_tag: image-classification
8
+ library_name: transformers
9
+ tags:
10
+ - traffic
11
+ - dense
12
+ - classification
13
  ---
14
+ ![dsfsdef.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bpucqawIvBlE7i0YCG6ba.png)
15
+
16
+ # **Traffic-Density-Classification**
17
+ > **Traffic-Density-Classification** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **traffic density** categories using the **SiglipForImageClassification** architecture.
18
+
19
+
20
  ```py
21
  Classification Report:
22
  precision recall f1-score support
 
32
  ```
33
 
34
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xatFDNCVZo5jGHW8njTmz.png)
35
+
36
+ The model categorizes images into the following 4 classes:
37
+ - **Class 0:** "high-traffic"
38
+ - **Class 1:** "low-traffic"
39
+ - **Class 2:** "medium-traffic"
40
+ - **Class 3:** "no-traffic"
41
+
42
+ # **Run with Transformers🤗**
43
+
44
+ ```python
45
+ !pip install -q transformers torch pillow gradio
46
+ ```
47
+
48
+ ```python
49
+ import gradio as gr
50
+ from transformers import AutoImageProcessor
51
+ from transformers import SiglipForImageClassification
52
+ from transformers.image_utils import load_image
53
+ from PIL import Image
54
+ import torch
55
+
56
+ # Load model and processor
57
+ model_name = "prithivMLmods/Traffic-Density-Classification"
58
+ model = SiglipForImageClassification.from_pretrained(model_name)
59
+ processor = AutoImageProcessor.from_pretrained(model_name)
60
+
61
+ def traffic_density_classification(image):
62
+ """Predicts traffic density category for an image."""
63
+ image = Image.fromarray(image).convert("RGB")
64
+ inputs = processor(images=image, return_tensors="pt")
65
+
66
+ with torch.no_grad():
67
+ outputs = model(**inputs)
68
+ logits = outputs.logits
69
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
70
+
71
+ labels = {
72
+ "0": "high-traffic", "1": "low-traffic", "2": "medium-traffic", "3": "no-traffic"
73
+ }
74
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
75
+
76
+ return predictions
77
+
78
+ # Create Gradio interface
79
+ iface = gr.Interface(
80
+ fn=traffic_density_classification,
81
+ inputs=gr.Image(type="numpy"),
82
+ outputs=gr.Label(label="Prediction Scores"),
83
+ title="Traffic Density Classification",
84
+ description="Upload an image to classify it into one of the 4 traffic density categories."
85
+ )
86
+
87
+ # Launch the app
88
+ if __name__ == "__main__":
89
+ iface.launch()
90
+ ```
91
+
92
+ # **Intended Use:**
93
+
94
+ The **Traffic-Density-Classification** model is designed for traffic image classification. It helps categorize traffic density levels into predefined categories. Potential use cases include:
95
+
96
+ - **Traffic Monitoring:** Classifying images from traffic cameras to assess congestion levels.
97
+ - **Smart City Applications:** Assisting in traffic flow management and congestion reduction strategies.
98
+ - **Automated Traffic Analysis:** Helping transportation authorities analyze and optimize road usage.
99
+ - **AI Research:** Supporting computer vision-based traffic density classification models.