File size: 4,397 Bytes
cee8776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc70fa
 
cee8776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc70fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-0.6B
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- DAG
- gspo
- trl
- math
- code
---

![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/fBguYrd2lot-ffKx0yhvY.png)

# **Telescopium-Acyclic-Qwen3-0.6B**

> **Telescopium-Acyclic-Qwen3-0.6B** is a high-efficiency, multi-domain model fine-tuned on **Qwen-0.6B** using the **rStar-Coder** dataset enhanced with **code expert clusters** and an extended **open code reasoning dataset**, plus **deepseek-r1 math reasoning traces**. It leverages **Directed Acyclic Graph (DAG) multistep reasoning** for precise symbolic problem solving in mathematics, code, and science—making it ideal for developers, educators, and researchers working with structured reasoning pipelines under constrained compute.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/Telescopium-Acyclic-Qwen3-0.6B-GGUF](https://huggingface.co/prithivMLmods/Telescopium-Acyclic-Qwen3-0.6B-GGUF)

---

## **Key Features**

1. **DAG-Based Multistep Reasoning for Math**
   Implements **Directed Acyclic Graph (DAG) reasoning methodology** to break down complex mathematical problems into dependency-ordered steps, inspired by **deepseek-r1 reasoning traces**.

2. **Unified Reasoning Across Code, Math & Science**
   Fine-tuned on **expert clusters** spanning programming, mathematics, and scientific logic, alongside an **open code reasoning dataset**, enabling cross-domain symbolic precision.

3. **Advanced Code Reasoning & Generation**
   Supports multi-language coding with explanations, optimization hints, and error detection—ideal for full-stack prototyping, algorithm synthesis, and debugging workflows.

4. **Scientific Problem Solving**
   Performs analytical reasoning in physics, biology, and chemistry—explaining concepts, solving equations, and handling symbolic derivations step-by-step.

5. **Hybrid Symbolic-AI Thinking**
   Combines **DAG logic decomposition**, chain-of-thought reasoning, and open-ended inference, delivering robust performance on STEM tasks and complex prompt decomposition.

6. **Structured Output Mastery**
   Seamlessly generates output in **LaTeX**, **Markdown**, **JSON**, **CSV**, and **YAML**, suited for research reports, technical documentation, and data formats.

7. **Optimized Lightweight Footprint for Versatile Deployment**
   Strikes a balance between performance and efficiency, making it deployable on **mid-range GPUs**, **offline clusters**, and advanced **edge AI systems**.

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Telescopium-Acyclic-Qwen3-0.6B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Solve the equation: 3x^2 + 5x - 2 = 0 using DAG-based step decomposition."

messages = [
    {"role": "system", "content": "You are a STEM reasoning tutor using DAG multistep methodology for problem solving."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Mathematical tutoring with **DAG-based decomposition**
* Scientific and computational logic education
* Advanced coding assistant for algorithm design, code reviews, and documentation
* Structured technical data generation across formats and fields
* STEM-focused chatbot or API for research and education tools
* Mid-resource deployment requiring high symbolic fidelity

## **Limitations**

* Not tuned for general-purpose or long-form creative writing
* Context limitations may hinder multi-document or full codebase analysis
* Specialized in technical and symbolic tasks—general chat may underperform
* Prioritizes structured reasoning over emotional or casual tone generation