prithivMLmods commited on
Commit
c00d933
·
verified ·
1 Parent(s): ff0ec39

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -1
README.md CHANGED
@@ -5,4 +5,103 @@ datasets:
5
  base_model:
6
  - HuggingFaceTB/SmolLM2-360M-Instruct
7
  library_name: transformers
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  base_model:
6
  - HuggingFaceTB/SmolLM2-360M-Instruct
7
  library_name: transformers
8
+ language:
9
+ - en
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - trl
13
+ - text-generation-inference
14
+ - re-think
15
+ - r1
16
+ ---
17
+
18
+ ![Add a heading.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/HWLZRJqFt1tOH8IjOyDHf.png)
19
+
20
+ # **SmolLM2-Rethink-360M**
21
+
22
+ > **SmolLM2-Rethink-360M** is an experimental lightweight reasoning model trained on the **Celestia3-DeepSeek-R1-0528** dataset. Built on top of the **SmolLM2-135M-Instruct** architecture and scaled to 360M parameters, it is designed to enhance lightweight reasoning, logical deduction, and structured response generation—all while maintaining efficiency for resource-constrained environments.
23
+
24
+ ---
25
+
26
+ ## **Key Highlights**
27
+
28
+ 1. **Compact Yet Powerful**
29
+ With 360M parameters, the model balances performance and efficiency, offering solid reasoning capabilities with fast inference speeds.
30
+
31
+ 2. **Reasoning-Oriented Training**
32
+ Fine-tuned on instruction-tuned datasets like **Celestia3-DeepSeek-R1-0528**, optimized for logical step-by-step thinking.
33
+
34
+ 3. **Optimized for Edge & Research**
35
+ Usable on mid-range GPUs or CPU environments, making it ideal for experimentation, teaching, and lightweight deployment.
36
+
37
+ 4. **Structured Generation Support**
38
+ Capable of outputting well-organized content such as JSON, lists, workflows, and tabular formats.
39
+
40
+ ---
41
+
42
+ ## **Quickstart with 🤗 Transformers**
43
+
44
+ ```python
45
+ %%capture
46
+ !pip install transformers
47
+ ```
48
+
49
+ ```py
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+
52
+ checkpoint = "prithivMLmods/SmolLM2-Rethink-360M"
53
+ device = "cuda" # or "cpu"
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
56
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
57
+
58
+ messages = [{"role": "user", "content": "What is gravity?"}]
59
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
60
+ print(input_text)
61
+
62
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
63
+ outputs = model.generate(
64
+ inputs,
65
+ max_new_tokens=1024,
66
+ temperature=0.2,
67
+ top_p=0.9,
68
+ do_sample=True
69
+ )
70
+
71
+ print(tokenizer.decode(outputs[0]))
72
+ ```
73
+
74
+ ---
75
+
76
+ ## **Intended Use**
77
+
78
+ * **Lightweight Reasoning Tasks**
79
+ Suitable for compact agents needing reasoning abilities without high compute requirements.
80
+
81
+ * **Educational & Research Assistants**
82
+ Ideal for logic tutors, student aides, or research prototypes.
83
+
84
+ * **Instruction Following & Structured QA**
85
+ Excels in scenarios requiring concise, step-by-step or well-formatted responses.
86
+
87
+ * **Microservices & Embedded AI**
88
+ Can be embedded in systems with modest hardware, enabling distributed or modular AI.
89
+
90
+ ---
91
+
92
+ ## **Limitations**
93
+
94
+ 1. **Knowledge Scope**
95
+ Smaller models naturally have less factual coverage compared to large-scale LLMs.
96
+
97
+ 2. **Context Length**
98
+ Best used with shorter prompts and outputs due to token and memory constraints.
99
+
100
+ 3. **Variability in Creative Tasks**
101
+ Less suited for imaginative writing or nuanced creative expression.
102
+
103
+ 4. **Limited Real-World Awareness**
104
+ Model does not have real-time or post-training data awareness.
105
+
106
+ 5. **Prompt Sensitivity**
107
+ Outputs can vary based on phrasing; best results come from clear, guided prompts.