--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-4B pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - moe --- # **Qwen3-4B-GGUF** > Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support ## Model Files | File Name | Size | Quantization | Format | Description | | ---------------------- | ------- | ------------ | ------ | -------------------------------- | | `Qwen3_4B.F32.gguf` | 16.1 GB | FP32 | GGUF | Full precision (float32) version | | `Qwen3_4B.BF16.gguf` | 8.05 GB | BF16 | GGUF | BFloat16 precision version | | `Qwen3_4B.F16.gguf` | 8.05 GB | FP16 | GGUF | Float16 precision version | | `Qwen3_4B.Q3_K_M.gguf` | 2.08 GB | Q3\_K\_M | GGUF | 3-bit quantized (K M variant) | | `Qwen3_4B.Q3_K_S.gguf` | 1.89 GB | Q3\_K\_S | GGUF | 3-bit quantized (K S variant) | | `Qwen3_4B.Q4_K_M.gguf` | 2.5 GB | Q4\_K\_M | GGUF | 4-bit quantized (K M variant) | | `Qwen3_4B.Q4_K_S.gguf` | 2.38 GB | Q4\_K\_S | GGUF | 4-bit quantized (K S variant) | | `Qwen3_4B.Q5_K_M.gguf` | 2.89 GB | Q5\_K\_M | GGUF | 5-bit quantized (K M variant) | | `Qwen3_4B.Q8_0.gguf` | 4.28 GB | Q8\_0 | GGUF | 8-bit quantized | | `.gitattributes` | 2.02 kB | — | — | Git LFS tracking file | | `config.json` | 31 B | — | — | Configuration placeholder | | `README.md` | 3.6 kB | — | — | Model documentation | ## Quants Usage (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_S.gguf) | Q3_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.IQ4_XS.gguf) | IQ4_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_S.gguf) | Q4_K_S | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_M.gguf) | Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_S.gguf) | Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_M.gguf) | Q5_K_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q6_K.gguf) | Q6_K | 0.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q8_0.gguf) | Q8_0 | 0.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.f16.gguf) | f16 | 1.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)