prithivMLmods commited on
Commit
930fb28
·
verified ·
1 Parent(s): 37adeaf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Qwen/Qwen3-4B
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
+ tags:
10
+ - text-generation-inference
11
+ - moe
12
+ ---
13
+
14
+ # **Qwen3-4B-GGUF**
15
+
16
+ > Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support
17
+
18
+ ## Model Files
19
+
20
+ | File Name | Size | Quantization | Format | Description |
21
+ | ---------------------- | ------- | ------------ | ------ | ----------------------------- |
22
+ | `Qwen3_4B.BF16.gguf` | 8.05 GB | BF16 | GGUF | BFloat16 precision version |
23
+ | `Qwen3_4B.F16.gguf` | 8.05 GB | FP16 | GGUF | Float16 precision version |
24
+ | `Qwen3_4B.Q3_K_M.gguf` | 2.08 GB | Q3\_K\_M | GGUF | 3-bit quantized (K M variant) |
25
+ | `Qwen3_4B.Q3_K_S.gguf` | 1.89 GB | Q3\_K\_S | GGUF | 3-bit quantized (K S variant) |
26
+ | `Qwen3_4B.Q4_K_M.gguf` | 2.50 GB | Q4\_K\_M | GGUF | 4-bit quantized (K M variant) |
27
+ | `Qwen3_4B.Q4_K_S.gguf` | 2.38 GB | Q4\_K\_S | GGUF | 4-bit quantized (K S variant) |
28
+ | `Qwen3_4B.Q5_K_M.gguf` | 2.89 GB | Q5\_K\_M | GGUF | 5-bit quantized (K M variant) |
29
+ | `Qwen3_4B.Q8_0.gguf` | 4.28 GB | Q8\_0 | GGUF | 8-bit quantized |
30
+ | `.gitattributes` | 1.97 kB | — | — | Git LFS tracking file |
31
+ | `config.json` | 31 B | — | — | Configuration placeholder |
32
+ | `README.md` | 31 B | — | — | Model documentation |
33
+
34
+ ## Quants Usage
35
+
36
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
37
+
38
+ | Link | Type | Size/GB | Notes |
39
+ |:-----|:-----|--------:|:------|
40
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q2_K.gguf) | Q2_K | 0.4 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_S.gguf) | Q3_K_S | 0.5 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality |
43
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_L.gguf) | Q3_K_L | 0.5 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.IQ4_XS.gguf) | IQ4_XS | 0.6 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_S.gguf) | Q4_K_S | 0.6 | fast, recommended |
46
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_M.gguf) | Q4_K_M | 0.6 | fast, recommended |
47
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_S.gguf) | Q5_K_S | 0.6 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_M.gguf) | Q5_K_M | 0.7 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q6_K.gguf) | Q6_K | 0.7 | very good quality |
50
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q8_0.gguf) | Q8_0 | 0.9 | fast, best quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.f16.gguf) | f16 | 1.6 | 16 bpw, overkill |
52
+
53
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
54
+ types (lower is better):
55
+
56
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)