Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,196 +1,208 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
-
|
17 |
-
|
18 |
-
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
type:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
type:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
type:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
type:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
name:
|
98 |
-
|
99 |
-
|
100 |
-
name:
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
name:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
tokenizer
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zho
|
5 |
+
- eng
|
6 |
+
- fra
|
7 |
+
- spa
|
8 |
+
- por
|
9 |
+
- deu
|
10 |
+
- ita
|
11 |
+
- rus
|
12 |
+
- jpn
|
13 |
+
- kor
|
14 |
+
- vie
|
15 |
+
- tha
|
16 |
+
- ara
|
17 |
+
base_model:
|
18 |
+
- Qwen/Qwen2.5-7B-Instruct
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
library_name: transformers
|
21 |
+
tags:
|
22 |
+
- LCoT
|
23 |
+
- Qwen
|
24 |
+
- v2
|
25 |
+
datasets:
|
26 |
+
- PowerInfer/QWQ-LONGCOT-500K
|
27 |
+
- AI-MO/NuminaMath-CoT
|
28 |
+
- prithivMLmods/Math-Solve
|
29 |
+
- amphora/QwQ-LongCoT-130K
|
30 |
+
- prithivMLmods/Deepthink-Reasoning
|
31 |
+
model-index:
|
32 |
+
- name: QwQ-LCoT2-7B-Instruct
|
33 |
+
results:
|
34 |
+
- task:
|
35 |
+
type: text-generation
|
36 |
+
name: Text Generation
|
37 |
+
dataset:
|
38 |
+
name: IFEval (0-Shot)
|
39 |
+
type: wis-k/instruction-following-eval
|
40 |
+
split: train
|
41 |
+
args:
|
42 |
+
num_few_shot: 0
|
43 |
+
metrics:
|
44 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
45 |
+
value: 55.76
|
46 |
+
name: averaged accuracy
|
47 |
+
source:
|
48 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
49 |
+
name: Open LLM Leaderboard
|
50 |
+
- task:
|
51 |
+
type: text-generation
|
52 |
+
name: Text Generation
|
53 |
+
dataset:
|
54 |
+
name: BBH (3-Shot)
|
55 |
+
type: SaylorTwift/bbh
|
56 |
+
split: test
|
57 |
+
args:
|
58 |
+
num_few_shot: 3
|
59 |
+
metrics:
|
60 |
+
- type: acc_norm
|
61 |
+
value: 34.37
|
62 |
+
name: normalized accuracy
|
63 |
+
source:
|
64 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
65 |
+
name: Open LLM Leaderboard
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
name: Text Generation
|
69 |
+
dataset:
|
70 |
+
name: MATH Lvl 5 (4-Shot)
|
71 |
+
type: lighteval/MATH-Hard
|
72 |
+
split: test
|
73 |
+
args:
|
74 |
+
num_few_shot: 4
|
75 |
+
metrics:
|
76 |
+
- type: exact_match
|
77 |
+
value: 22.21
|
78 |
+
name: exact match
|
79 |
+
source:
|
80 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
81 |
+
name: Open LLM Leaderboard
|
82 |
+
- task:
|
83 |
+
type: text-generation
|
84 |
+
name: Text Generation
|
85 |
+
dataset:
|
86 |
+
name: GPQA (0-shot)
|
87 |
+
type: Idavidrein/gpqa
|
88 |
+
split: train
|
89 |
+
args:
|
90 |
+
num_few_shot: 0
|
91 |
+
metrics:
|
92 |
+
- type: acc_norm
|
93 |
+
value: 6.38
|
94 |
+
name: acc_norm
|
95 |
+
source:
|
96 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
97 |
+
name: Open LLM Leaderboard
|
98 |
+
- task:
|
99 |
+
type: text-generation
|
100 |
+
name: Text Generation
|
101 |
+
dataset:
|
102 |
+
name: MuSR (0-shot)
|
103 |
+
type: TAUR-Lab/MuSR
|
104 |
+
args:
|
105 |
+
num_few_shot: 0
|
106 |
+
metrics:
|
107 |
+
- type: acc_norm
|
108 |
+
value: 15.75
|
109 |
+
name: acc_norm
|
110 |
+
source:
|
111 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
112 |
+
name: Open LLM Leaderboard
|
113 |
+
- task:
|
114 |
+
type: text-generation
|
115 |
+
name: Text Generation
|
116 |
+
dataset:
|
117 |
+
name: MMLU-PRO (5-shot)
|
118 |
+
type: TIGER-Lab/MMLU-Pro
|
119 |
+
config: main
|
120 |
+
split: test
|
121 |
+
args:
|
122 |
+
num_few_shot: 5
|
123 |
+
metrics:
|
124 |
+
- type: acc
|
125 |
+
value: 37.13
|
126 |
+
name: accuracy
|
127 |
+
source:
|
128 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct
|
129 |
+
name: Open LLM Leaderboard
|
130 |
+
---
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# **QwQ-LCoT2-7B-Instruct**
|
135 |
+
|
136 |
+
The *QwQ-LCoT2-7B-Instruct* is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the chain of thought reasoning datasets, focusing on chain-of-thought (CoT) reasoning for problems. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
|
137 |
+
|
138 |
+
# **Quickstart with Transformers**
|
139 |
+
|
140 |
+
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
|
141 |
+
|
142 |
+
```python
|
143 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
144 |
+
|
145 |
+
model_name = "prithivMLmods/QwQ-LCoT2-7B-Instruct"
|
146 |
+
|
147 |
+
model = AutoModelForCausalLM.from_pretrained(
|
148 |
+
model_name,
|
149 |
+
torch_dtype="auto",
|
150 |
+
device_map="auto"
|
151 |
+
)
|
152 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
153 |
+
|
154 |
+
prompt = "How many r in strawberry."
|
155 |
+
messages = [
|
156 |
+
{"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
|
157 |
+
{"role": "user", "content": prompt}
|
158 |
+
]
|
159 |
+
text = tokenizer.apply_chat_template(
|
160 |
+
messages,
|
161 |
+
tokenize=False,
|
162 |
+
add_generation_prompt=True
|
163 |
+
)
|
164 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
165 |
+
|
166 |
+
generated_ids = model.generate(
|
167 |
+
**model_inputs,
|
168 |
+
max_new_tokens=512
|
169 |
+
)
|
170 |
+
generated_ids = [
|
171 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
172 |
+
]
|
173 |
+
|
174 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
175 |
+
```
|
176 |
+
|
177 |
+
# **Intended Use**
|
178 |
+
|
179 |
+
The QwQ-LCoT2-7B-Instruct model is designed for advanced reasoning and instruction-following tasks, with specific applications including:
|
180 |
+
|
181 |
+
1. **Instruction Following**: Providing detailed and step-by-step guidance for a wide range of user queries.
|
182 |
+
2. **Logical Reasoning**: Solving problems requiring multi-step thought processes, such as math problems or complex logic-based scenarios.
|
183 |
+
3. **Text Generation**: Crafting coherent, contextually relevant, and well-structured text in response to prompts.
|
184 |
+
4. **Problem-Solving**: Analyzing and addressing tasks that require chain-of-thought (CoT) reasoning, making it ideal for education, tutoring, and technical support.
|
185 |
+
5. **Knowledge Enhancement**: Leveraging reasoning datasets to offer deeper insights and explanations for a wide variety of topics.
|
186 |
+
|
187 |
+
# **Limitations**
|
188 |
+
|
189 |
+
1. **Data Bias**: As the model is fine-tuned on specific datasets, its outputs may reflect inherent biases from the training data.
|
190 |
+
2. **Context Limitation**: Performance may degrade for tasks requiring knowledge or reasoning that significantly exceeds the model's pretraining or fine-tuning context.
|
191 |
+
3. **Complexity Ceiling**: While optimized for multi-step reasoning, exceedingly complex or abstract problems may result in incomplete or incorrect outputs.
|
192 |
+
4. **Dependency on Prompt Quality**: The quality and specificity of the user prompt heavily influence the model's responses.
|
193 |
+
5. **Non-Factual Outputs**: Despite being fine-tuned for reasoning, the model can still generate hallucinated or factually inaccurate content, particularly for niche or unverified topics.
|
194 |
+
6. **Computational Requirements**: Running the model effectively requires significant computational resources, particularly when generating long sequences or handling high-concurrency workloads.
|
195 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
196 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__QwQ-LCoT2-7B-Instruct-details)!
|
197 |
+
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FQwQ-LCoT2-7B-Instruct&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
|
198 |
+
|
199 |
+
| Metric |Value (%)|
|
200 |
+
|-------------------|--------:|
|
201 |
+
|**Average** | 28.60|
|
202 |
+
|IFEval (0-Shot) | 55.76|
|
203 |
+
|BBH (3-Shot) | 34.37|
|
204 |
+
|MATH Lvl 5 (4-Shot)| 22.21|
|
205 |
+
|GPQA (0-shot) | 6.38|
|
206 |
+
|MuSR (0-shot) | 15.75|
|
207 |
+
|MMLU-PRO (5-shot) | 37.13|
|
208 |
+
|