--- license: apache-2.0 language: - en base_model: - prithivMLmods/Open-Xi-Math-Preview pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference - math --- # **Open-Xi-Math-Preview-GGUF** > **Open-Xi-Math-Preview** is a **mathematics-focused reasoning model** fine-tuned on **Qwen2-1.5B-Instruct**, utilizing a **modular dataset** designed for enhancing **mathematical thinking**. It provides robust capabilities in symbolic reasoning, structured deduction, and compact coding — optimized for edge deployment on **resource-constrained devices**. ## Model Files | File Name | Size | Quantization | Format | Description | | ---------------------------------- | ------- | ------------ | ------ | ----------------------------- | | `Open-Xi-Math-Preview.BF16.gguf` | 3.56 GB | BF16 | GGUF | BFloat16 precision version | | `Open-Xi-Math-Preview.F16.gguf` | 3.56 GB | FP16 | GGUF | Float16 precision version | | `Open-Xi-Math-Preview.F32.gguf` | 7.11 GB | FP32 | GGUF | Float32 precision version | | `Open-Xi-Math-Preview.Q2_K.gguf` | 753 MB | Q2\_K | GGUF | 2-bit quantized (K variant) | | `Open-Xi-Math-Preview.Q3_K_M.gguf` | 924 MB | Q3\_K\_M | GGUF | 3-bit quantized (K M variant) | | `Open-Xi-Math-Preview.Q4_K_M.gguf` | 1.12 GB | Q4\_K\_M | GGUF | 4-bit quantized (K M variant) | | `Open-Xi-Math-Preview.Q4_K_S.gguf` | 1.07 GB | Q4\_K\_S | GGUF | 4-bit quantized (K S variant) | | `Open-Xi-Math-Preview.Q5_K_M.gguf` | 1.29 GB | Q5\_K\_M | GGUF | 5-bit quantized (K M variant) | | `Open-Xi-Math-Preview.Q5_K_S.gguf` | 1.26 GB | Q5\_K\_S | GGUF | 5-bit quantized (K S variant) | | `Open-Xi-Math-Preview.Q6_K.gguf` | 1.46 GB | Q6\_K | GGUF | 6-bit quantized (K variant) | | `Open-Xi-Math-Preview.Q8_0.gguf` | 1.89 GB | Q8\_0 | GGUF | 8-bit quantized | | `.gitattributes` | 2.39 kB | — | — | Git LFS tracking file | | `config.json` | 31 B | — | — | Configuration file | | `README.md` | 4.29 kB | — | — | Model documentation | ## Quants Usage (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_S.gguf) | Q3_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.IQ4_XS.gguf) | IQ4_XS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_S.gguf) | Q4_K_S | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q4_K_M.gguf) | Q4_K_M | 0.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_S.gguf) | Q5_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q5_K_M.gguf) | Q5_K_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q6_K.gguf) | Q6_K | 0.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.Q8_0.gguf) | Q8_0 | 0.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-0.6B-GGUF/resolve/main/Qwen3-0.6B.f16.gguf) | f16 | 1.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)