prithivMLmods commited on
Commit
35d9f11
·
verified ·
1 Parent(s): c6dc842

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -1
README.md CHANGED
@@ -1,5 +1,26 @@
1
  ---
2
  license: creativeml-openrail-m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
  <pre align="center">
5
  .___ _______.
@@ -8,4 +29,79 @@ license: creativeml-openrail-m
8
  / /_/ \ ___/\ ___/| |_> >___ \ \___ | | \ \___ | || \_\ \
9
  \____ |\___ >\___ > __/____ >/ ____|___| /\___ > |___||___ /
10
  \/ \/ \/|__| \/ \/ \/ \/ \/
11
- </pre>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - text-generation-inference
16
+ - Llama
17
+ - Code
18
+ - CoT
19
+ - Math
20
+ - Deepsync
21
+ - 3b
22
+ base_model:
23
+ - prithivMLmods/Llama-Deepsync-1B
24
  ---
25
  <pre align="center">
26
  .___ _______.
 
29
  / /_/ \ ___/\ ___/| |_> >___ \ \___ | | \ \___ | || \_\ \
30
  \____ |\___ >\___ > __/____ >/ ____|___| /\___ > |___||___ /
31
  \/ \/ \/|__| \/ \/ \/ \/ \/
32
+ </pre>
33
+ The **Llama-Deepsync-1B-GGUF** is a fine-tuned version of the **Llama-3.2-1B-Instruct** base model, designed for text generation tasks that require deep reasoning, logical structuring, and problem-solving. This model leverages its optimized architecture to provide accurate and contextually relevant outputs for complex queries, making it ideal for applications in education, programming, and creative writing.
34
+
35
+ With its robust natural language processing capabilities, **Llama-Deepsync-1B-GGUF** excels in generating step-by-step solutions, creative content, and logical analyses. Its architecture integrates advanced understanding of both structured and unstructured data, ensuring precise text generation aligned with user inputs.
36
+
37
+ - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
38
+ - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
39
+ - **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
40
+ - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
41
+
42
+ # **Model Architecture**
43
+
44
+ Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
45
+
46
+ # **Use with transformers**
47
+
48
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
49
+
50
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
51
+
52
+ ```python
53
+ import torch
54
+ from transformers import pipeline
55
+
56
+ model_id = "prithivMLmods/Llama-Deepsync-1B"
57
+ pipe = pipeline(
58
+ "text-generation",
59
+ model=model_id,
60
+ torch_dtype=torch.bfloat16,
61
+ device_map="auto",
62
+ )
63
+ messages = [
64
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
65
+ {"role": "user", "content": "Who are you?"},
66
+ ]
67
+ outputs = pipe(
68
+ messages,
69
+ max_new_tokens=256,
70
+ )
71
+ print(outputs[0]["generated_text"][-1])
72
+ ```
73
+
74
+ Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
75
+
76
+ # **Run with Ollama [Ollama Run]**
77
+
78
+ Ollama makes running machine learning models simple and efficient. Follow these steps to set up and run your GGUF models quickly.
79
+
80
+ ## Quick Start: Step-by-Step Guide
81
+
82
+ | Step | Description | Command / Instructions |
83
+ |------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
84
+ | 1 | **Install Ollama 🦙** | Download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your system. |
85
+ | 2 | **Create Your Model File** | - Create a file named after your model, e.g., `metallama`. |
86
+ | | | - Add the following line to specify the base model: |
87
+ | | | ```bash |
88
+ | | | FROM Llama-3.2-1B.F16.gguf |
89
+ | | | ``` |
90
+ | | | - Ensure the base model file is in the same directory. |
91
+ | 3 | **Create and Patch the Model** | Run the following commands to create and verify your model: |
92
+ | | | ```bash |
93
+ | | | ollama create metallama -f ./metallama |
94
+ | | | ollama list |
95
+ | | | ``` |
96
+ | 4 | **Run the Model** | Use the following command to start your model: |
97
+ | | | ```bash |
98
+ | | | ollama run metallama |
99
+ | | | ``` |
100
+ | 5 | **Interact with the Model** | Once the model is running, interact with it: |
101
+ | | | ```plaintext |
102
+ | | | >>> Tell me about Space X. |
103
+ | | | Space X, the private aerospace company founded by Elon Musk, is revolutionizing space exploration... |
104
+ | | | ``` |
105
+
106
+ ## Conclusion
107
+ With Ollama, running and interacting with models is seamless. Start experimenting today!