File size: 9,445 Bytes
57d3c68
 
2ad4fb2
 
 
 
 
 
 
 
 
 
 
57d3c68
5c814ce
fce6546
 
2ad4fb2
 
1ac4aa5
2ad4fb2
 
 
 
 
5c814ce
57d3c68
 
 
f181f24
 
9ec7e3c
 
2ad4fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b62123b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad4fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c814ce
2ad4fb2
 
 
9ec7e3c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
license: llama3.2
language:
- en
base_model:
- canopylabs/orpheus-3b-0.1-ft
pipeline_tag: text-to-speech
library_name: transformers
tags:
- Voice:Luna
- Female
- Radio
- 3B
---

![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/pq9-4XqpvJMz0aNGexZRy.png)

# **Llama-3B-Mono-Luna**

> Llama-3B-Mono-Luna is a Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been fine-tuned to deliver human-like speech synthesis, achieving exceptional clarity, expressiveness, and real-time streaming performance. The model has been fine-tuned from mono audio of a female voice named 'Luna' with a radio essence using the base model `canopylabs/orpheus-3b-0.1-ft`.

> [!Important]
> In some cases, the results may be inconsistent, particularly when handling complex speech transformations.


<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Ye-Sonj51hDfi9IjUhl0B.wav"></audio>
 
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/OjMAZNjpip7tHu6T3_Rjm.wav"></audio>

[ paralinguistic emotions soft] 

<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/08Vb3CE8Ifi6jwpzI7Yuv.wav"></audio>

## **Model Details**

- **Base Model:** `canopylabs/orpheus-3b-0.1-ft`
- **Languages Supported:** English
- **License:** Llama 3.2
- **Model Version:** N/A

---

## **Paralinguistic Elements**

The model can generate speech with the following emotions:

| Elements     | Elements     | Elements     |
|------------|------------|------------|
| laugh      | chuckle     | sigh     |
| sniffle     | groan        | yawn  |
| gasp       | uhm     |  giggles & more  |

---

## **Run with Transformers 🤗**

```python
from huggingface_hub import notebook_login, HfApi
notebook_login()
```

### **Install Dependencies**
```python
%%capture
!pip install snac accelerate
!pip install transformers
!pip install gradio
```

## **Usage**

```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from snac import SNAC

def redistribute_codes(row):
    """
    Convert a sequence of token codes into an audio waveform using SNAC.
    The code assumes each 7 tokens represent one group of instructions.
    """
    row_length = row.size(0)
    new_length = (row_length // 7) * 7
    trimmed_row = row[:new_length]
    code_list = [t - 128266 for t in trimmed_row]
    
    layer_1, layer_2, layer_3 = [], [], []
    
    for i in range((len(code_list) + 1) // 7):
        layer_1.append(code_list[7 * i][None])
        layer_2.append(code_list[7 * i + 1][None] - 4096)
        layer_3.append(code_list[7 * i + 2][None] - (2 * 4096))
        layer_3.append(code_list[7 * i + 3][None] - (3 * 4096))
        layer_2.append(code_list[7 * i + 4][None] - (4 * 4096))
        layer_3.append(code_list[7 * i + 5][None] - (5 * 4096))
        layer_3.append(code_list[7 * i + 6][None] - (6 * 4096))
    
    with torch.no_grad():
        codes = [
            torch.concat(layer_1),
            torch.concat(layer_2),
            torch.concat(layer_3)
        ]
        for i in range(len(codes)):
            codes[i][codes[i] < 0] = 0
            codes[i] = codes[i][None]
        
        audio_hat = snac_model.decode(codes)
        return audio_hat.cpu()[0, 0]

# Load the SNAC model for audio decoding
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda")

# Load the single-speaker language model
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Luna')
model = AutoModelForCausalLM.from_pretrained(
    'prithivMLmods/Llama-3B-Mono-Luna', torch_dtype=torch.bfloat16
).cuda()

def generate_audio(text, temperature, top_p, max_new_tokens):
    """
    Given input text, generate speech audio.
    """
    speaker = "Luna"
    prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>'
    input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda')
    
    with torch.no_grad():
        generated_ids = model.generate(
            **input_ids,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.1,
            num_return_sequences=1,
            eos_token_id=128258,
        )
    
    row = generated_ids[0, input_ids['input_ids'].shape[1]:]
    y_tensor = redistribute_codes(row)
    y_np = y_tensor.detach().cpu().numpy()
    return (24000, y_np)

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Llama-3B-Mono-Luna - Single Speaker Audio Generation")
    gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Luna` model.")
    
    with gr.Row():
        text_input = gr.Textbox(lines=4, label="Input Text")
    
    with gr.Row():
        temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature")
        top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p")
        tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens")
    
    output_audio = gr.Audio(type="numpy", label="Generated Audio")
    generate_button = gr.Button("Generate Audio")
    
    generate_button.click(
        fn=generate_audio,
        inputs=[text_input, temp_slider, top_p_slider, tokens_slider],
        outputs=output_audio
    )

if __name__ == "__main__":
    demo.launch()
```

[ or ]

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from snac import SNAC

def redistribute_codes(row):
    """
    Convert a sequence of token codes into an audio waveform using SNAC.
    The code assumes each 7 tokens represent one group of instructions.
    """
    row_length = row.size(0)
    new_length = (row_length // 7) * 7
    trimmed_row = row[:new_length]
    code_list = [t - 128266 for t in trimmed_row]
    
    layer_1, layer_2, layer_3 = [], [], []
    
    for i in range((len(code_list) + 1) // 7):
        layer_1.append(code_list[7 * i][None])
        layer_2.append(code_list[7 * i + 1][None] - 4096)
        layer_3.append(code_list[7 * i + 2][None] - (2 * 4096))
        layer_3.append(code_list[7 * i + 3][None] - (3 * 4096))
        layer_2.append(code_list[7 * i + 4][None] - (4 * 4096))
        layer_3.append(code_list[7 * i + 5][None] - (5 * 4096))
        layer_3.append(code_list[7 * i + 6][None] - (6 * 4096))
    
    with torch.no_grad():
        codes = [
            torch.concat(layer_1),
            torch.concat(layer_2),
            torch.concat(layer_3)
        ]
        for i in range(len(codes)):
            codes[i][codes[i] < 0] = 0
            codes[i] = codes[i][None]
        
        audio_hat = snac_model.decode(codes)
        return audio_hat.cpu()[0, 0]

# Load the SNAC model for audio decoding
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda")

# Load the single-speaker language model
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Luna')
model = AutoModelForCausalLM.from_pretrained(
    'prithivMLmods/Llama-3B-Mono-Luna', torch_dtype=torch.bfloat16
).cuda()

def generate_audio(text, temperature, top_p, max_new_tokens):
    """
    Given input text, generate speech audio.
    """
    prompt = f'<custom_token_3><|begin_of_text|>{text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>'
    input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda')
    
    with torch.no_grad():
        generated_ids = model.generate(
            **input_ids,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.1,
            num_return_sequences=1,
            eos_token_id=128258,
        )
    
    row = generated_ids[0, input_ids['input_ids'].shape[1]:]
    y_tensor = redistribute_codes(row)
    y_np = y_tensor.detach().cpu().numpy()
    return (24000, y_np)

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Llama-3B-Mono-Luna - Single Speaker Audio Generation")
    gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Luna` model.")
    
    with gr.Row():
        text_input = gr.Textbox(lines=4, label="Input Text")
    
    with gr.Row():
        temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature")
        top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p")
        tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens")
    
    output_audio = gr.Audio(type="numpy", label="Generated Audio")
    generate_button = gr.Button("Generate Audio")
    
    generate_button.click(
        fn=generate_audio,
        inputs=[text_input, temp_slider, top_p_slider, tokens_slider],
        outputs=output_audio
    )

if __name__ == "__main__":
    demo.launch()
```

---

## **Intended Use**

- Designed for high-quality, single-speaker text-to-speech generation.
- Ideal for applications requiring human-like speech synthesis.
- Supports a range of emotions for expressive speech output.
- Suitable for AI voice assistants, storytelling, and accessibility applications.