Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,10 @@ tags:
|
|
25 |
|
26 |
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iTcZ1e2UYo_CkurPR_fsh.wav"></audio>
|
27 |
|
|
|
|
|
|
|
|
|
28 |
## **Model Details**
|
29 |
|
30 |
- **Base Model:** `canopylabs/orpheus-3b-0.1-ft`
|
@@ -63,6 +67,108 @@ notebook_login()
|
|
63 |
|
64 |
## **Usage**
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```python
|
67 |
import torch
|
68 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
25 |
|
26 |
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iTcZ1e2UYo_CkurPR_fsh.wav"></audio>
|
27 |
|
28 |
+
[ paralinguistic emotions soft]
|
29 |
+
|
30 |
+
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/A8KfCQs7nwyk07kMM_r7P.wav"></audio>
|
31 |
+
|
32 |
## **Model Details**
|
33 |
|
34 |
- **Base Model:** `canopylabs/orpheus-3b-0.1-ft`
|
|
|
67 |
|
68 |
## **Usage**
|
69 |
|
70 |
+
```py
|
71 |
+
import torch
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
import gradio as gr
|
74 |
+
from snac import SNAC
|
75 |
+
|
76 |
+
def redistribute_codes(row):
|
77 |
+
"""
|
78 |
+
Convert a sequence of token codes into an audio waveform using SNAC.
|
79 |
+
The code assumes each 7 tokens represent one group of instructions.
|
80 |
+
"""
|
81 |
+
row_length = row.size(0)
|
82 |
+
new_length = (row_length // 7) * 7
|
83 |
+
trimmed_row = row[:new_length]
|
84 |
+
code_list = [t - 128266 for t in trimmed_row]
|
85 |
+
|
86 |
+
layer_1, layer_2, layer_3 = [], [], []
|
87 |
+
|
88 |
+
for i in range((len(code_list) + 1) // 7):
|
89 |
+
layer_1.append(code_list[7 * i][None])
|
90 |
+
layer_2.append(code_list[7 * i + 1][None] - 4096)
|
91 |
+
layer_3.append(code_list[7 * i + 2][None] - (2 * 4096))
|
92 |
+
layer_3.append(code_list[7 * i + 3][None] - (3 * 4096))
|
93 |
+
layer_2.append(code_list[7 * i + 4][None] - (4 * 4096))
|
94 |
+
layer_3.append(code_list[7 * i + 5][None] - (5 * 4096))
|
95 |
+
layer_3.append(code_list[7 * i + 6][None] - (6 * 4096))
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
codes = [
|
99 |
+
torch.concat(layer_1),
|
100 |
+
torch.concat(layer_2),
|
101 |
+
torch.concat(layer_3)
|
102 |
+
]
|
103 |
+
for i in range(len(codes)):
|
104 |
+
codes[i][codes[i] < 0] = 0
|
105 |
+
codes[i] = codes[i][None]
|
106 |
+
|
107 |
+
audio_hat = snac_model.decode(codes)
|
108 |
+
return audio_hat.cpu()[0, 0]
|
109 |
+
|
110 |
+
# Load the SNAC model for audio decoding
|
111 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda")
|
112 |
+
|
113 |
+
# Load the single-speaker language model
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Cooper')
|
115 |
+
model = AutoModelForCausalLM.from_pretrained(
|
116 |
+
'prithivMLmods/Llama-3B-Mono-Cooper', torch_dtype=torch.bfloat16
|
117 |
+
).cuda()
|
118 |
+
|
119 |
+
def generate_audio(text, temperature, top_p, max_new_tokens):
|
120 |
+
"""
|
121 |
+
Given input text, generate speech audio.
|
122 |
+
"""
|
123 |
+
speaker = "Cooper"
|
124 |
+
prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>'
|
125 |
+
input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda')
|
126 |
+
|
127 |
+
with torch.no_grad():
|
128 |
+
generated_ids = model.generate(
|
129 |
+
**input_ids,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
do_sample=True,
|
132 |
+
temperature=temperature,
|
133 |
+
top_p=top_p,
|
134 |
+
repetition_penalty=1.1,
|
135 |
+
num_return_sequences=1,
|
136 |
+
eos_token_id=128258,
|
137 |
+
)
|
138 |
+
|
139 |
+
row = generated_ids[0, input_ids['input_ids'].shape[1]:]
|
140 |
+
y_tensor = redistribute_codes(row)
|
141 |
+
y_np = y_tensor.detach().cpu().numpy()
|
142 |
+
return (24000, y_np)
|
143 |
+
|
144 |
+
# Gradio Interface
|
145 |
+
with gr.Blocks() as demo:
|
146 |
+
gr.Markdown("# Llama-3B-Mono-Cooper - Single Speaker Audio Generation")
|
147 |
+
gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Cooper` model.")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
text_input = gr.Textbox(lines=4, label="Input Text")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature")
|
154 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p")
|
155 |
+
tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens")
|
156 |
+
|
157 |
+
output_audio = gr.Audio(type="numpy", label="Generated Audio")
|
158 |
+
generate_button = gr.Button("Generate Audio")
|
159 |
+
|
160 |
+
generate_button.click(
|
161 |
+
fn=generate_audio,
|
162 |
+
inputs=[text_input, temp_slider, top_p_slider, tokens_slider],
|
163 |
+
outputs=output_audio
|
164 |
+
)
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo.launch()
|
168 |
+
```
|
169 |
+
|
170 |
+
[ or ]
|
171 |
+
|
172 |
```python
|
173 |
import torch
|
174 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|