prithivMLmods commited on
Commit
1b75f3b
·
verified ·
1 Parent(s): 03fe55b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md CHANGED
@@ -26,6 +26,9 @@ tags:
26
 
27
  <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Yp-Ki76m2yF4keksD6ivE.wav"></audio>
28
 
 
 
 
29
 
30
  ## **Model Details**
31
 
@@ -65,6 +68,108 @@ notebook_login()
65
 
66
  ## **Usage**
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ```python
69
  import torch
70
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
26
 
27
  <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Yp-Ki76m2yF4keksD6ivE.wav"></audio>
28
 
29
+ [ paralinguistic emotions soft]
30
+
31
+ <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/7NLmvAEjTHsvUcmuLcufC.wav"></audio>
32
 
33
  ## **Model Details**
34
 
 
68
 
69
  ## **Usage**
70
 
71
+ ```py
72
+ import torch
73
+ from transformers import AutoTokenizer, AutoModelForCausalLM
74
+ import gradio as gr
75
+ from snac import SNAC
76
+
77
+ def redistribute_codes(row):
78
+ """
79
+ Convert a sequence of token codes into an audio waveform using SNAC.
80
+ The code assumes each 7 tokens represent one group of instructions.
81
+ """
82
+ row_length = row.size(0)
83
+ new_length = (row_length // 7) * 7
84
+ trimmed_row = row[:new_length]
85
+ code_list = [t - 128266 for t in trimmed_row]
86
+
87
+ layer_1, layer_2, layer_3 = [], [], []
88
+
89
+ for i in range((len(code_list) + 1) // 7):
90
+ layer_1.append(code_list[7 * i][None])
91
+ layer_2.append(code_list[7 * i + 1][None] - 4096)
92
+ layer_3.append(code_list[7 * i + 2][None] - (2 * 4096))
93
+ layer_3.append(code_list[7 * i + 3][None] - (3 * 4096))
94
+ layer_2.append(code_list[7 * i + 4][None] - (4 * 4096))
95
+ layer_3.append(code_list[7 * i + 5][None] - (5 * 4096))
96
+ layer_3.append(code_list[7 * i + 6][None] - (6 * 4096))
97
+
98
+ with torch.no_grad():
99
+ codes = [
100
+ torch.concat(layer_1),
101
+ torch.concat(layer_2),
102
+ torch.concat(layer_3)
103
+ ]
104
+ for i in range(len(codes)):
105
+ codes[i][codes[i] < 0] = 0
106
+ codes[i] = codes[i][None]
107
+
108
+ audio_hat = snac_model.decode(codes)
109
+ return audio_hat.cpu()[0, 0]
110
+
111
+ # Load the SNAC model for audio decoding
112
+ snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda")
113
+
114
+ # Load the single-speaker language model
115
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Ceylia')
116
+ model = AutoModelForCausalLM.from_pretrained(
117
+ 'prithivMLmods/Llama-3B-Mono-Ceylia', torch_dtype=torch.bfloat16
118
+ ).cuda()
119
+
120
+ def generate_audio(text, temperature, top_p, max_new_tokens):
121
+ """
122
+ Given input text, generate speech audio.
123
+ """
124
+ speaker = "Ceylia"
125
+ prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>'
126
+ input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda')
127
+
128
+ with torch.no_grad():
129
+ generated_ids = model.generate(
130
+ **input_ids,
131
+ max_new_tokens=max_new_tokens,
132
+ do_sample=True,
133
+ temperature=temperature,
134
+ top_p=top_p,
135
+ repetition_penalty=1.1,
136
+ num_return_sequences=1,
137
+ eos_token_id=128258,
138
+ )
139
+
140
+ row = generated_ids[0, input_ids['input_ids'].shape[1]:]
141
+ y_tensor = redistribute_codes(row)
142
+ y_np = y_tensor.detach().cpu().numpy()
143
+ return (24000, y_np)
144
+
145
+ # Gradio Interface
146
+ with gr.Blocks() as demo:
147
+ gr.Markdown("# Llama-3B-Mono-Ceylia - Single Speaker Audio Generation")
148
+ gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Ceylia` model.")
149
+
150
+ with gr.Row():
151
+ text_input = gr.Textbox(lines=4, label="Input Text")
152
+
153
+ with gr.Row():
154
+ temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature")
155
+ top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p")
156
+ tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens")
157
+
158
+ output_audio = gr.Audio(type="numpy", label="Generated Audio")
159
+ generate_button = gr.Button("Generate Audio")
160
+
161
+ generate_button.click(
162
+ fn=generate_audio,
163
+ inputs=[text_input, temp_slider, top_p_slider, tokens_slider],
164
+ outputs=output_audio
165
+ )
166
+
167
+ if __name__ == "__main__":
168
+ demo.launch()
169
+ ```
170
+
171
+ [ or ]
172
+
173
  ```python
174
  import torch
175
  from transformers import AutoTokenizer, AutoModelForCausalLM