prithivMLmods commited on
Commit
dad9371
·
verified ·
1 Parent(s): ae971f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -2,8 +2,104 @@
2
  library_name: transformers.js
3
  base_model:
4
  - prithivMLmods/Lang-Exster-0.5B-Instruct
 
 
 
 
 
 
 
5
  ---
6
 
7
  # Lang-Exster-0.5B-Instruct (ONNX)
8
 
9
  This is an ONNX version of [prithivMLmods/Lang-Exster-0.5B-Instruct](https://huggingface.co/prithivMLmods/Lang-Exster-0.5B-Instruct). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers.js
3
  base_model:
4
  - prithivMLmods/Lang-Exster-0.5B-Instruct
5
+ license: apache-2.0
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - text-generation-inference
11
+ - code
12
  ---
13
 
14
  # Lang-Exster-0.5B-Instruct (ONNX)
15
 
16
  This is an ONNX version of [prithivMLmods/Lang-Exster-0.5B-Instruct](https://huggingface.co/prithivMLmods/Lang-Exster-0.5B-Instruct). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
17
+
18
+ ![4.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/idAWG-bcbdFSmTJdcnIYb.png)
19
+
20
+ # **Lang-Exster-0.5B-Instruct**
21
+
22
+ > **Lang-Exster-0.5B-Instruct** is a **general-purpose instruction-following LLM** fine-tuned from **Qwen2.5-0.5B**. This model is optimized for **lightweight deployments** and **instructional clarity**, capable of performing a wide range of natural language and programming-related tasks with efficiency and interpretability.
23
+
24
+ ## **Key Features**
25
+
26
+ 1. **Instruction Following & Explanation**
27
+ Trained to **understand, follow, and respond** to natural language instructions with clear, logical, and relevant output. Suitable for Q&A, step-by-step reasoning, and guided code generation.
28
+
29
+ 2. **Lightweight General-Purpose Model**
30
+ Fine-tuned from **Qwen2.5-0.5B**, making it **highly efficient for edge devices**, **local tools**, and **low-resource applications** without sacrificing utility.
31
+
32
+ 3. **Multi-Domain Task Handling**
33
+ Can perform across **coding**, **writing**, **summarization**, **chat**, **translation**, and **educational queries**, thanks to its broad general-purpose instruction tuning.
34
+
35
+ 4. **Compact and Efficient**
36
+ At just **0.5B parameters**, Lang-Exster is optimized for **fast inference**, **low memory usage**, and seamless integration into developer tools and workflows.
37
+
38
+ 5. **Code Assistance (Lite)**
39
+ Capable of **basic code generation**, **syntax checking**, and **conceptual explanations**, especially useful for beginners and instructional applications.
40
+
41
+ ## **Quickstart with Transformers**
42
+
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+
46
+ model_name = "prithivMLmods/Lang-Exster-0.5B-Instruct"
47
+
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ model_name,
50
+ torch_dtype="auto",
51
+ device_map="auto"
52
+ )
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+
55
+ prompt = "Write a Python function that checks if a number is prime, and explain how it works."
56
+
57
+ messages = [
58
+ {"role": "system", "content": "You are an instructional assistant. Follow user instructions clearly and explain your reasoning."},
59
+ {"role": "user", "content": prompt}
60
+ ]
61
+ text = tokenizer.apply_chat_template(
62
+ messages,
63
+ tokenize=False,
64
+ add_generation_prompt=True
65
+ )
66
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
67
+
68
+ generated_ids = model.generate(
69
+ **model_inputs,
70
+ max_new_tokens=512
71
+ )
72
+ generated_ids = [
73
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
74
+ ]
75
+
76
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
77
+ ```
78
+
79
+ ## **Intended Use**
80
+
81
+ - **General-Purpose Assistant**:
82
+ Performs everyday tasks such as Q&A, summarization, light coding, language generation, and translation.
83
+
84
+ - **Educational Support**:
85
+ Aids learners in understanding topics through **guided explanations**, **basic coding help**, and **concept breakdowns**.
86
+
87
+ - **Lightweight Developer Integration**:
88
+ Ideal for command-line assistants, browser plugins, and desktop utilities with limited compute resources.
89
+
90
+ - **Instruction Clarity Demonstrator**:
91
+ Acts as a fine baseline for developing **instruction-tuned** capabilities in constrained environments.
92
+
93
+ ## **Limitations**
94
+
95
+ 1. **Scale Limitations**
96
+ Being a 0.5B model, it has limited memory and may not handle deep context or long documents effectively.
97
+
98
+ 2. **Reasoning Depth**
99
+ Provides **surface-level reasoning** and may struggle with highly technical, abstract, or creative prompts.
100
+
101
+ 3. **Basic Code Generation**
102
+ Supports basic scripting and logic but may miss edge cases or advanced patterns in complex code.
103
+
104
+ 4. **Prompt Design Sensitivity**
105
+ Performs best with **clear**, **concise**, and **well-structured** instructions.